

System Level Design, Performance, Cost and Economic Assessment – New Brunswick Head Harbour Passage Tidal In-Stream Power Plant

Report: EPRI – TP - 006 - NB

Principal Investigator: Mirko Previsic

Contributors: Brian Polagye, Roger Bedard

Date: June 10, 2006

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

This document was prepared by the organizations named below as an account of work sponsored or cosponsored by the Electric Power Research Institute Inc. (EPRI). Neither EPRI, any member of EPRI, any cosponsor, the organization (s) below, nor any person acting on behalf of any of them.

- (A) Makes any warranty or representation whatsoever, express or implied, (I) with respect to the use of any information, apparatus, method, process or similar item disclosed in this document, including merchantability and fitness for a particular purpose, or (II) that such use does not infringe on or interfere with privately owned rights, including any party's intellectual property, or (III) that this document is suitable to any particular user's circumstance; or
- (B) Assumes responsibility for any damages or other liability whatsoever (including any consequential damages, even if EPRI or any EPRI representative has been advised of the possibility of such damages) resulting for your selection or use of this document or any other information, apparatus, method, process or similar item disclosed in this document.

Organization(s) that prepared this document

Global Energy Partners LLC

Virginia Polytechnic Institute and State University

Mirko Previsic Consulting

Brian Polagye¹ Consulting

¹ PhD Student, Department of Mechanical Engineering, University of Washington

Table of Contents

List of Figures	5
List of Tables	6
1. Introduction and Summary	7
2. Site Selection	
Tidal Energy Resource	14
Grid Interconnection options	
Nearby Port facilities	
Bathymetry	21
Seabed Composition	
Navigational Clearances	
Other Site Considerations	
Relevant Site Data	24
3. Lunar Energy Device	25
Device Description	
Device Performance	
Lunar Device Evolution	
Installation of Lunar Module	
Operational Activities Lunar Energy	35
4. Marine Current Turbines	
Device Performance	
Device Specification	40
MCT Device Evolution	
Monopile Foundations	
Pile Installation.	
Operational and Maintenance Activities	48
5. Electrical Interconnection	
Subsea Cabling	
Onshore Cabling and Grid Interconnection	
6. System Design – Pilot Plant	
7. System Design - Commercial TISEC Power Plant	
Electrical Interconnection	55
Physical Layout	
8. Cost Assessment – Demonstration Plant - \$ in 2005 USD	
9. Cost Assessment – Commercial Plant - \$ in 2005 USD	
10. Cost of Electricity Assessments	
11. Sensitivity Studies (Need to rerun sensibility based on local financing	
Array Size	
Power Plant System Availability	
Current Velocity	
Design Velocity	
Financial Assumptions	
12. Conclusions	
Pilot In-Stream Tidal Power Plant	
Commercial In-Stream Tidal Power Plant	

Techno-economic Challenges	79
General Conclusions	
Recommendations	82
13. References	84
14. Appendix	85
Irrelevance of Flow Decay Concerns	85
Hub-height Velocity Approximation	86
Utility Generator Cost of Electricity Worksheet	88
Non Utility Generator Internal Rate of Return Worksheet	95
Municipal Generator Cost of Electricity Worksheet	100

List of Figures

Figure 1: Location of Head Harbour Passage, New Brunswick	11
Figure 2 - Head Harbour Passage Intermediate View	
Figure 4 - Regional flow simulation showing energy density	
Figure 5 - Depth averaged velocity distribution at the target site. Velocity shown is in m	
Figure 6 - Typical depth-averaged velocity profile over a 48 hour period	15
Figure 7 - Typical depth-averaged power variation over a 48-hour period	
Figure 8 - Velocity profile over a 20 day period covering more then a full lunar cycle	
Figure 9 - Power variation of a 20-day period	
Figure 10 - Distance from Site to substation	
Figure 11 - Nautical Chart of Head Harbour Passage. Water depth shown in meters	21
Figure 12 - Likely Sediment composition at the site Today	
Figure 13 - Lunar Energy Mark I Prototype design	
Figure 14 - Insertion and removal of cassette	26
Figure 15 - Efficiency curves of Power Conversion System	27
Figure 16 – Comparison of water current speed and electrical power output	29
Figure 17 – Variation of flow power and electrical power output at the site	30
Figure 18 - Variation of flow power and electrical output at the site over a 14 day period	. 30
Figure 19 - RTT 2000 Mark II structural design.	32
Figure 20 - Manson Construction 600 ton Derrick Barge WOTAN operating offshore	34
Figure 21 - Deep Oceans Phantom ROV	35
Figure 22 – MCT SeaGen (courtesy of MCT)	36
Figure 23 – MCT SeaFlow Test Unit (courtesy of MCT)	37
Figure 24 – Comparison of water current speed and electrical power output	
Figure 25 – Variation of flow power and electrical power output at the site	39
Figure 26 - Variation of flow power and electrical power output at the site over a lunar c	ycle
	40
Figure 27 – MCT SeaGen (courtesy of MCT)	42
Figure 28 - MCT next generation conceptual illustration	43
Figure 29 - Simulation of pile-soil interaction subject to lateral load (Source: Danish	
Geotechnical Institute)	44
Figure 30 - Pile Weight as a function of design velocity for different sediment types	45
Figure 31 – Pile Installed in Bedrock (Seacore)	
Figure 32 - 600 ton Derrick Barge WOTAN operating offshore (Manson Construction)	
Figure 33: Typical Rigid Inflatable Boat (RIB)	
Figure 34 – Armored submarine cables	
Figure 35 - Conceptual Electrical Design for a single TISEC Unit	
Figure 36 - Electrical Power Collection and Grid Interconnection for commercial plant	
Figure 37 - NB Deployment Site. Water depth shown in meters	
Figure 38 – MCT SeaGen Turbine Spacing Assumptions	
Figure 39 - Lunar RTT 2000 Spacing Assumptions	
Figure 40 – Sensitivity of COE to number of turbines installed	
Figure 41 – Sensitivity of capital cost elements to number of installed turbines	72

Figure 42 – Sensitivity of annual O&M cost to number of installed turbines	72
Figure 43 – Sensitivity of COE to array availability	73
Figure 44 – Sensitivity of COE to average flow power in kW/m ²	74
Figure 45 – Sensitivity of COE to average current speed (m/s)	74
Figure 46 – Sensitivity of COE to design speed	
Figure 47 – Sensitivity of COE to Fixed Charge Rate	76
Figure 48 – Sensitivity of COE to production credits	
Figure 49 – Representative Numerical Integration	
List of Tables Table 1: Relevant Site Design Parameters	
Table 2 - RTT2000 Mark II Specifications optimized for Western Passage Site condit	ions 26
Table 3 – Device Performance at deployment site (depth adjusted)	28
Table 4 – Device Performance	
Table 5 – SeaGen Device Specification optimized for the Dog island transect site	
Table 6 – Pilot Grid Interconnection	
Table 7 - Physical Layout Properties	
Table 8 - Capital Cost breakdown of MCT Pilot plant	
Table 9 – MCT commercial plant capital cost breakdown	
Table 10 - COE for Alternative Energy Technologies: 2010	
Table 11 - COE for Alternative Energy Technologies: 2010 for a Utility Generator	60
Table 12 – Approximation Variance as Function of Hub Height	

1. Introduction and Summary

Head Harbour Passage trends southwest to northeast from Friar Roads and is the main shipping channel to Passamaquoddy Bay from the adjacent Bay of Fundy. On average 56 MW of power is embodied in the tidal stream, of which about 8.5 MW could be extracted without any negative impact on the environment. A plant of that scale could reach an electrical output of about 21MW at peak. There is an higher uncertainty with these estimates than for the US states because of the lack of tidal current measurement data in the region. Better data may yield improved results.

This document describes the results of a system level design, performance and cost study for both a demonstration pilot plant and an economics assessment of a commercial size instream tidal power plant installed in the Head Harbour Passage. The primary purpose of this design study was to identify and quantify the risks and benefits of using TISEC technology at this site. As such it addresses the technology, energy production, cost of a pilot and commercial power plant system and cost of electricity.

The study was carried out using the methodology and standards established in the Design Methodology Report [5], the Power Production Performance Methodology Report [2] and the Cost Estimate and Economics Assessment Methodology Report [2]. All dollars (\$) stated in this report are United States dollars (USD)

For purposes of this design study, the New Brunswick stakeholders and EPRI decided to work with two TISEC device developers: Lunar Energy and Marine Current Turbines (MCT). Lunar Energy's RTT 2000 is a fully submersed ducted turbine with the power conversion system (containing rotors and power generation equipment) inserted in a slot in the duct as a cassette. This allows the critical components to be recovered for operation and maintenance without having to remove the whole structure. MCT's SeaGen consists of two horizontal-axis rotors and power trains (gearbox, generator) attached to a supporting monopile by a cross-arm. The monopile is surface piercing and includes an integrated lifting mechanism to pull the rotors and power trains out of the water for maintenance access. MCT also offered information on their conceptual fully submersed design, which

consists of 6 rotors mounted on a single structure, which can be raised to the surface for maintenance using an integrated lifting mechanism.

The purpose of working with two TISEC device developers was to provide a redundant check of the performance and cost design points and to increase the confidence level of the assessment work. There is no intend to compare the two device developers nor their technology. At this nascent stage of TISEC development, a pursuit towards the development and demonstration of as many good ideas as possible is warranted.

It became clear during the study that a TISEC array would have to be placed directly below the navigation channel at the site. As such only fully submersible technology could be used at the site, which is the RTT2000 and MCTs second generation technology. However, only MCTs surface piercing SeaGen offered sufficiently solid engineering specifications at this time (January through March 2006) to perform an independent cost assessment. SeaGen was therefore used to establish relevant performance and cost estimates. Given the similar scale and technology used on MCT's fully submersed technology, it is likely that cost and performance will be similar to the surface piercing SeaGen. In order to extract a meaningful amount of energy at the Head Harboure site, a technology needs to be sufficiently large in scale to extract a meaningful amount of energy and be completely submersed to avoid interference with shipping traffic. Both MCTs second generation technology and Lunar Energy's RTT2000 satisfy these criteria. It is unlikely that MCTs second generation technology will be ready for commercial pilot demonstration in the next couple or three years.

A pilot consisting of a single SeaGen unit would cost \$3.8M to build and would produce an estimated 962 MWh per year. This cost reflects only the capital needed to purchase a SeaGen unit, install it on site, and connect it to the grid. Therefore, it represents the installed capital cost, but does not include detailed design, permitting and construction financing, yearly O&M or test and evaluation costs.

A commercial scale tidal power plant at the same location was also evaluated to establish a base case from which economic comparisons to other renewable and non renewable energy systems could be made. The potential to harness energy at the site was limited to 15% to ensure that the system produces no significant or noticeable ecological or environmental effects.

The yearly electrical energy produced and delivered to bus bar is estimated to be 63,504 MWh/year for an array consisting of 66 dual-rotor MCT turbines. These turbines have a combined installed capacity of 20.4MW, and on average extract 8.5 MW of kinetic power from the tidal stream, which is roughly 15% of the total kinetic energy at the site. The elements of cost and economics (in 2005\$) for MCT's SeaGen are:

- Utility Generator (UG) Total Plant Investment = \$67.6 million
- Annual O&M Cost = \$2.3 million
- UG Levelized Cost of Electricity (COE) = 10 (Real) 11.7 (Nominal) cents/kWh with renewable financial incentives equal to that the government provides for renewable wind energy technology
- Municipal Generator (MG) Levelized Cost of Electricity (COE) = 9.2 (Real) 11.2
 (Nominal) cents/kWh with renewable financial incentives equal to that the government provides for renewable wind energy technology
- Non Utility Generator (Independent Power Producer) Internal Rate of Return on net cash flows after tax is less than zero.

While being limited in size, this resource should be tapped strategically as it will contribute to a balanced energy supply system. In order to tap into it, further work needs to be carried out to better quantify and qualify the resource, address permitting issues and continue to work with device developers and help them apply their technology to the site and it's unique requirements. The next immediate step is to work towards the implementation of a pilot demonstration system. A pilot system is an important intermediary step before proceeding to a commercial installation and is used to:

- Prove technology reliability and performance at the site and reduce commercial risks

- Measure and quantify environmental impacts
- Focus the permitting approval process for a commercial installation

Before proceeding with the installation of a pilot plant, remaining uncertainties need to be addressed. Some of these uncertainties include:

- Tidal velocity distribution at the site
- Seabed geology required for detailed foundation design
- Ownership issues
- Consenting issues
- Political and public education issues

In order to promote development of TISEC, EPRI recommends that stakeholders build collaboration within New Brunswick and with other Provincial/U.S.State/Federal Government agencies by forming a provincial electricity stakeholder group and joining a TISEC Working Group to be formed by EPRI. Additional, EPRI encourages the stakeholders to support related R&D activities at a provincial and federal level and at universities in the region. This would include:

- Implement a national ocean tidal energy program
- Operate a national in stream tidal energy test facility
- Promote development of industry standards
- Continue membership in the IEA Ocean Energy Program
- Clarify and streamline federal, provincial and local permitting processes
- Study provisions for tax incentives and subsidies needed to incentivize potential investors and owners to bring this technology to the marketplace
- Ensure that the public receives a fair return from the use of tidal energy resources
- Ensure that development rights in provincial waters are allocated through a fair and transparent process that takes into account provincial, local, and public concerns.

2. Site Selection

The New Brunswick electricity stakeholders selected the Head Harbour Passage for an assessment of in stream tidal power. Site selection is determined by the following primary considerations:

- Good tidal energy resource
- Ease of interconnection and accessibility to an electrical demand
- Proximity to major port with marine infrastructure

The Head Harbour Passage satisfies these considerations. Fabrication, assembly, installation, operation and maintenance would be performed out of Eastport, ME or Saint John. Grid interconnection can be accomplished by tying into an existing transmission line at the cable landing site on Campobello Island. A small substation would need to be constructed to accommodate necessary interconnection equipment. Figure 1 shows a Google Earth depiction of the region.

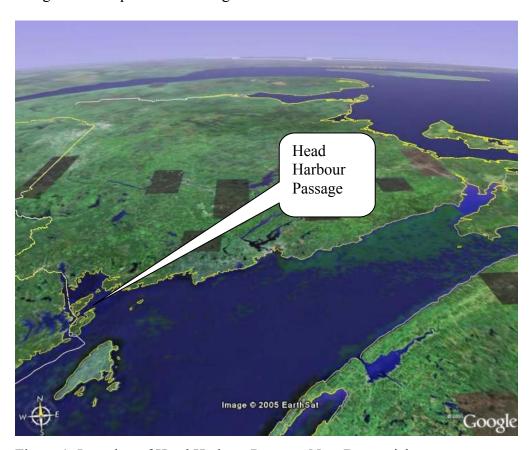


Figure 1: Location of Head Harbour Passage, New Brunswick

The Head Harbour Passage is a narrow passage, which connects the Passamaquoddy Bay and the open ocean. The tidal difference between the Passamaquoddy Bay and open ocean forces the water through this narrow channel, creating high current velocities suitable for locating TISEC devices.

Figure 2 shows a local map of the Head Harbour Passage. Head Harbour Passage trends southwest to northeast from Friar Roads and is the main shipping entrance channel to Passamaquoddy Bay from the adjacent Bay of Fundy. The northwest shore of Campobello Island and the entrance to Harbour de Lute border form the southeastern side of Head Harbour Passage. Its northwestern side is formed by a series of islands, rocks and shallow shoals that similarly trend southwest to northeast.



Figure 2 - Head Harbour Passage Intermediate View

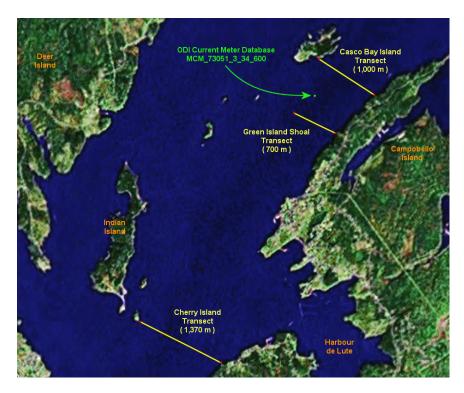


Figure 3. Potential Tidal Plant Transects in Head Harbor Passage

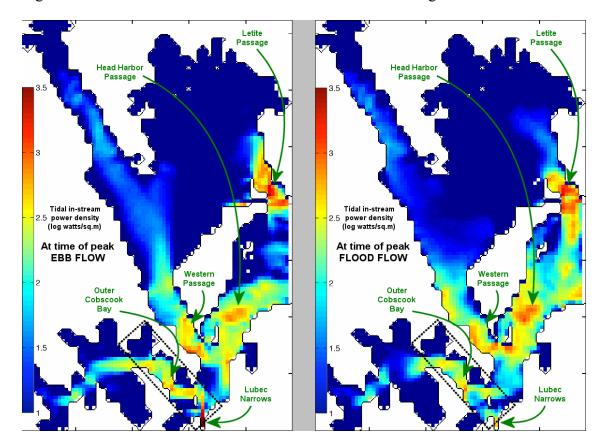


Figure 4 - Regional flow simulation showing energy density

Tidal Energy Resource

The velocity distribution at the Head Harbour Passage was extrapolated from short term CHS measurement data using the Canada Department of Fisheries WebTide model. Table 1 and Figure 5 shows the depth-averaged velocity distribution at the narrowest transect. This data is later used to calculate the annual performance of the device at the site.

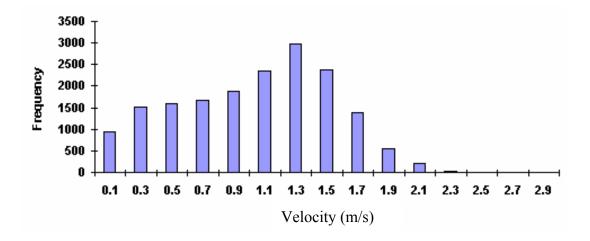


Figure 5 - Depth averaged velocity distribution at the target site. Velocity shown is in m/s

					Energy
Velocity	Power Density	Number	Percentage	Number	Density
(m/sec)	(kW/m^2)	of Cases	of Cases	of Hours	(kWh/sq.m)
0.1	0.0	941	5.4%	470.5	0.2
0.3	0.0	1526	8.7%	763.0	10.6
0.5	0.1	1603	9.2%	801.5	51.3
0.7	0.2	1679	9.6%	839.5	147.6
0.9	0.4	1885	10.8%	942.6	352.1
1.1	0.7	2356	13.4%	1178.1	803.6
1.3	1.1	2986	17.0%	1493.1	1,681.2
1.5	1.7	2371	13.5%	1185.6	2,050.7
1.7	2.5	1379	7.9%	689.5	1,736.2
1.9	3.5	541	3.1%	270.5	950.9
2.1	4.7	220	1.3%	110.0	522.1
2.3	6.2	32	0.2%	16.0	99.8
2.5	8.0	0	0.0%	0.0	0.0
Totals		17519	100.0%	8760	8,406.3
Average Power Density (kW/m^2)					0.94
Channel Cros	ss Sectional Area (n	n^2)			60,000
Avg. Power A	Available				56.4 MW
Avg. Power E	Extractable (15%)				8.5 MW

The following charts show the depth-averaged resource variability and magnitude over time. All of these resource profiles are based on a preliminary extrapolation, which was used for this study. Detailed 3-dimensional theoretical modeling and measurements should be carried out in a detailed design phase to properly quantify the resource and show cross-sectional variability as well as potential resource stratification, which may occur at the site and can have a critical impact on the device deployment location as well as device cost and economics.

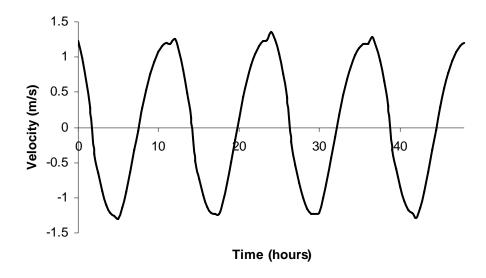


Figure 6 - Typical depth-averaged velocity profile over a 48 hour period

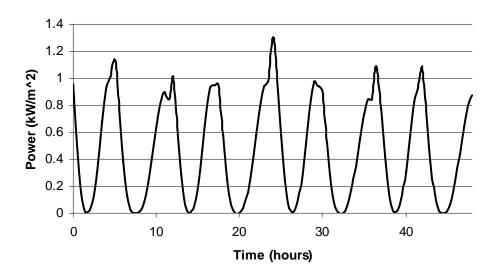


Figure 7 - Typical depth-averaged power variation over a 48-hour period

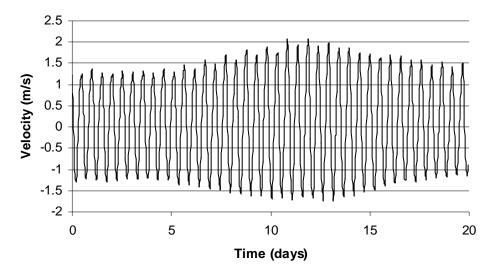


Figure 8 - Velocity profile over a 20 day period covering more then a full lunar cycle

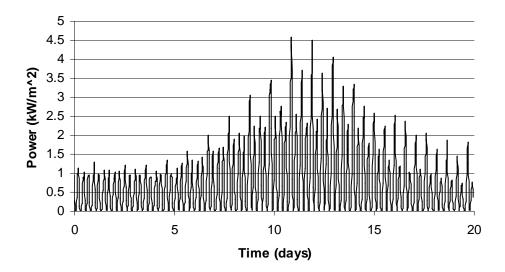
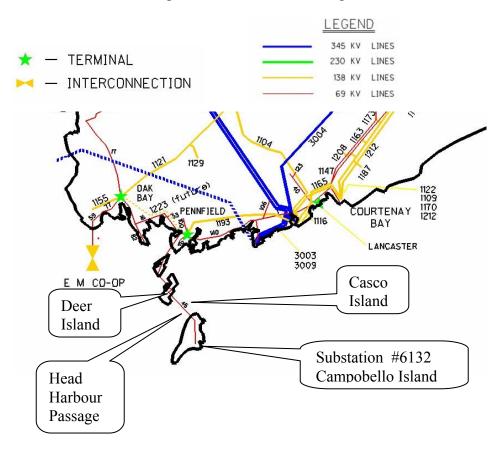



Figure 9 - Power variation of a 20-day period

Grid Interconnection options

Head Harbour Passage is served by New Brunswick Power Company (NB Power). The project site and NB Power recommended Campbello substation #6132 interconnection map for Head Harbour Passage which is shown in the figure below.

NB power recommended interconnecting the TISEC array at substation # 6132 on Campobello island. This would require a transmission line of 2.8 miles from shore to the substation (see figure 10 below).

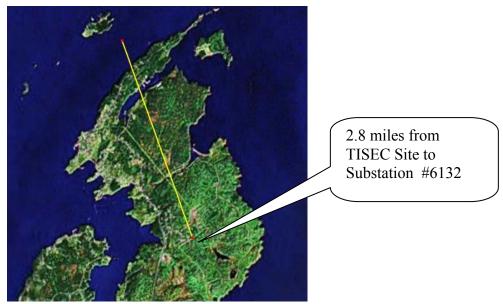


Figure 10 - Distance from Site to substation

Submarine cables connecting Campobello island to the NB grid however are landing to shore in very close proximity to the TISEC site. Constructing a small substation and tapping directly into the transmission line is therefore a lower cost alternative. The transmission line rating will likely limit the amount of power that can be fed into the transmission network to about 20MW peak. The limiting factor of the existing 69kV transmission line is the submarine cable coming from Deer Island. If electric power were to be interconnected on Deer Island feed-in limits would likely be higher.

Nearby Port facilities

Eastport, Maine is the recommended shore side support center for basing inspection, maintenance and repair activities.

Eastport, Maine is the easternmost deepwater port in the United States. The docks of the port are along the waterfront on the east shore of the island. There is a medical clinic in town. The principal industries are forest products, lobstering, herring fishing, scallop harvesting, farming and harvesting salmon, and tourism.

A dredged small-craft harbor for commercial and pleasure craft is off the customhouse in Eastport. The harbor is protected on its north and east sides by a steel piling, solid fill, L-shaped breakwater—wharf onto which fishing vessels can unload their catch into trucks. In April 1984, depths of 13 feet and 9 feet were available in the southern part and northern part of the harbor, respectively. A town float with 10 feet alongside is on the inner side of the breakwater at the north end of the harbor. Boats usually moor along the inner face of the breakwater. In fair weather, berthing is also possible along the east and north (seaward) faces of the breakwater in depths of 36 feet and 6½ to 10 feet, respectively. Forest products are loaded along the east face. Electricity is available at all the berths, and diesel fuel can be delivered by truck on short notice. The breakwater is floodlighted at night.

The only active cannery along the waterfront, 100 yards north of the breakwater, has a wharf with 65-foot face and 1 to 5 feet alongside. Fresh water is available on the wharf. The Port of Eastport offers general cargo dockage at the Breakwater Pier. The 420-foot facility can accommodate vessels with a draft up to 36 feet.

A machine shop in the port handles repairs to small-craft gasoline or diesel engines. Electrical repairs also can be made. Small vessels are usually grounded out at high water for hull repairs after the tide falls. There is a private facility for hauling out craft up to 40 feet in length and a boatbuilder who makes hull repairs.

There is no railroad service to Eastport, but a good highway parallels the St. Croix River to Calais. There also is a municipal airport at Eastport.

In New Brunswick, there are three possible maritime support centers in Passamaquoddy Bay: Bayside Marine Terminal on the St. Croix River, Blacks Harbour, and Port St. Andrews. Each of these is described briefly, below.

Bayside Marine Terminal is located on the east side of the St. Croix River, 4.8 miles above the river entrance at Joes Point. A T-shaped wharf, extends 91 m from the shore, having an outer face 241 m long, with depths of 7.5 to 8.5m alongside. A berth on the inner face is 80 m long with an alongside depth of 6.5 m. The wharf is concrete and lighted, and fresh water is available.

Blacks Harbour, south of Letang Head, provides temporary anchorage for small vessels. An L-shaped wharf for the ferry to Grand Manan Island, 122 m long, with a depth of 4.6 m alongside, lies close within the entrance and on the south side of the harbor. A patent slip and marine railway with repair facilities is situated on the northwest side of Blacks Harbour. The length of the cradle is 24 m and it can accommodate vessels of up to 24 m in length, 6 m breadth, and a maximum draft of 3.4 m, with a lifting capacity of 60 tons. There is a refitting berth, which dries, adjacent to the slip.

Port St. Andrews is formed between Navy Island and the town of St. Andrews, is open all year, but is restricted by flats that dry at low water, and should not be entered without local knowledge. The main entrance is the eastern dredged channel, marked by buoys, with a least depth reported of 3 m. There is a government wharf, 259 m long, with a 46 m outer face having an alongside depth of 2.4 m. No other facilities are reported.

Although the above three New Brunswick towns have well-maintained wharves and associated infrastructure (electrical power, lighting, water), the range of additional support services (such as spare heavy-lift capability, machine shops, metal fabrication, and electrical repair works) is not nearly as extensive as exists at Eastport. At a New Brunswick Advisory Group meeting held in St. Andrews on 29 August 2005, it was suggested that Eastport be the recommended shoreside support center for tidal in-stream energy projects in the Passamaquoddy Bay region.

Bathymetry

The bathymetry (the ocean equivalent to land topography) is an important determinant in the siting of tidal turbines. In shallow water, there may be insufficient surface and seabed clearance for the turbine rotor. This drives site selection towards deeper water sites. The bathymetry at Head Harbour Passage is shown in Figure 11.

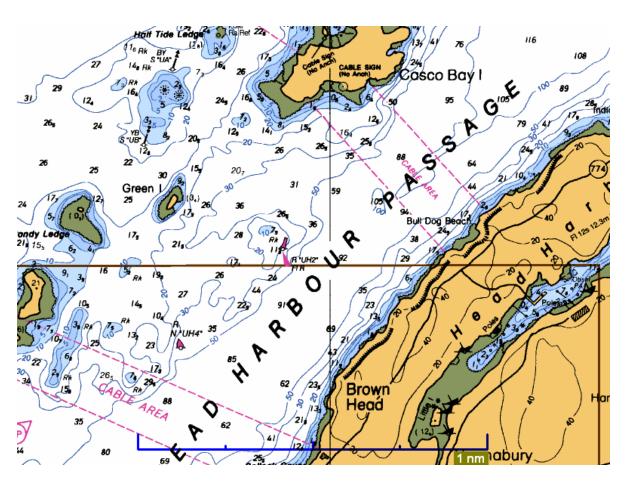


Figure 11 - Nautical Chart of Head Harbour Passage. Water depth shown in meters.

Seabed Composition

Sedimentation at a tidal energy deployment site is an important consideration for foundation design and has an impact on the type of foundation used, installation methods and scour protection methods (if required).

As the tidal range in the Bay of Fundy increased dramatically during the past few thousand years, tidal currents removed fine-grained sediment, locally exposing bedrock and leaving coarse-grained lag deposits. The following figure shows what the likely sediment composition at the site is Today. More details can be found in the NB site survey and characterization report (Reference #3).

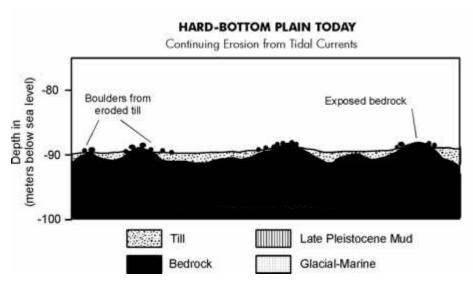


Figure 12 - Likely Sediment composition at the site Today

Navigational Clearances

The principal navigation entrance to Passamaquoddy Bay is around the northern end of Campobello Island through Head Harbour Passage. This passage is deep and generally clear of dangers. Since the channel depth here is up to 100m, there is ample clearance for navigation over a Lunar Energy ducted turbine, even by deep-draft commercial shipping. For the purpose of this design study a navigational clearance of 15m below LAT was used.

Other Site Considerations

Electrical energy required to meet the New Brunswick in-province load was 15,640 GWh in fiscal year 2003/04 and the maximum in-province demand was 3,326 MW. Forecast growth over the next 10 years is 1.1%. There is sufficient existing in-province generation to meet the forecast demand over that period. However, considering the lead time for new generation development and regional demand out pacing supply much sooner, a market for new generation in the region is expected. Additional capacity also will be needed to cover an 18 month refurbishment project of the 640 MW nuclear plant within 5 years.

To meet some of this demand, to further diversify its energy supply mix and to meet environmental objectives, New Brunswick is taking measures to advance renewable energy. The current electricity supply is 23% renewable in the form of hydro and wood. New Brunswick announced a renewable portfolio standard (RPS) target in 2005 that will require 10% of all electricity used in the province to come from new renewable sources by 2016. This is expected to be met largely with wind power, but biomass and other sources such as ocean energy are expected to be part of the renewable supply.

As with neighboring Western Passage, the most important potential competing uses of sea space in Head Harbour Passage is interference with navigation, commercial fishing and salmon farming. Head Harbour Passage is naturally quite deep, and therefore not subject to maintenance dredging.

Commercial Fishing: Potential conflicts are minimal where the faster currents and deeper water limit lobstering activity as compared with the shoal and island area to the northwest.

Salmon Farming: Salmon farms are found in coves and bays along the northwest coastline of Campobello Island, and a potential conflict would arise if excessive amounts of tidal current energy were withdrawn from this flow, reducing the natural flushing action through salmon-rearing pens. Limiting tidal in-stream energy projects to withdrawing no more than 15% of the cross-sectional base resource should avoid this potential negative impact.

There is a submarine power cable crossing from the western shore of Head Harbour, midway along the road between Wilsons Beach and East Quoddy Head, to Casco Bay Island, and then from Casco Bay Island to Leonardville on Deer Island. Leonardville is then

connected to the New Brunswick mainland by an overhead power line that crosses Letete Passage.

The submarine cable crossing of Head Harbour Passage at Casco Island represents an opportunity for a potential tidal in-stream power project there to share this underwater cable corridor and associated shore-crossing easement.

Relevant Site Data

For the purpose of establishing point designs for both a demonstration and commercial system, the following data points are relevant.

Table 1: Relevant Site Design Parameters

Site	
Channel Width (Cosco Bay island	1000 m
transect)	
Average Depth (from MLLW)	60 m
Deepest Point	100 m
Seabed Type	Rock, with sediment overburden
Tidal Energy Statistics	
Depth Averaged Power Density	0.94 kW/m^2
Average Power Available	56.4 MW
Average Power Extractable (15%)	8.5 MW
# Homes equivalent (1.3 kW/home)	6,538
Peak Velocity at Site (surface)	2.3 m/s
Grid Interconnection Demo	
Sediment type along cable route	Rock
Cable Landing	Directionally drilled to site
Overland Interconnection Upgrade cost	\$250k
Infrastructure Upgrade Cost	None
Grid Interconnection Commercial	
Cable Landing	Directionally drilled
Overland Interconnection Upgrade cost	\$500k
Infrastructure Upgrade Cost	None

3. Lunar Energy Device

Device Description

The Lunar Energy technology, known as the Rotech Tidal Turbine (RTT) and illustrated in Figure 13, is a horizontal axis turbine located in a symmetrical duct. Unique features of the RTT are the use of a fixed duct, a patent pending blade design and the use of a hydraulic speed increaser. The full-scale prototype is designed to produce 1 MW of electricity while the initial commercial unit, the RTT 2000, is designed to produce 2 MW from a 7.2 knot (surface current) tidal stream. While no detailed cost analysis was carried out for this device, EPRI used the geometry of the RTT2000 to establish parameters for this project to address critical engineering issues. Ballast and structural reinforcements were scaled to meet load conditions at the site based on the maximum tidal current speed. Where required scour protection and other measures were assessed which are likely to impact the design at a particular site. The gravity foundation is provided by a concrete base, which can be provided with additional ballast to meet the required stability in high currents. The duct consists of steel plates which are supported by a steel tubular frame.

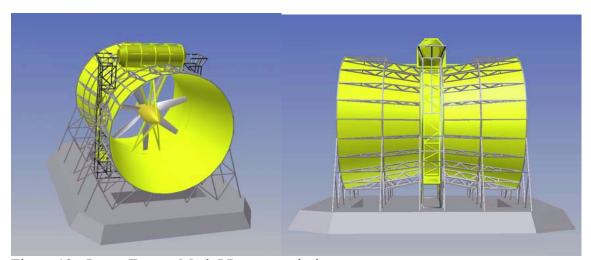


Figure 13 - Lunar Energy Mark I Prototype design

A cassette with the complete power take off, including rotor, hydraulic power conversion, electrical generation and grid synchronization is inserted as a module into the duct. This arrangement allows for relatively simple removal and replacement of the power conversion system and simplifies O&M procedures.

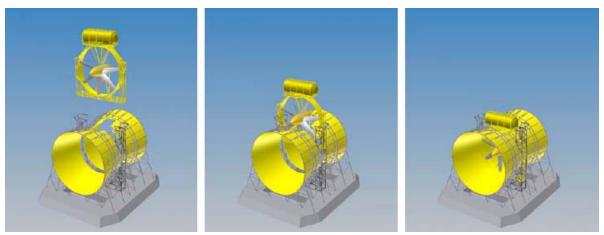


Figure 14 - Insertion and removal of cassette

Based on the site design velocity (maximum occurring velocity) the basic design's weight breakdown was scaled to ensure structural integrity and device stability. The following table contains the key properties for this site-design.

Table 2 - RTT2000 Mark II Specifications optimized for Western Passage Site conditions

Generic Device Specs	<u> </u>
Power Conversion	Hydraulic
Electrical Output	Synchronized with Grid
Foundation	Gravity Base
Dimensions	
Duct Inlet Diameter	21m
Duct Length	27m
Duct Clearance to Seafloor	10m
Duct Inlet Area	$346m^2$
Hub Height above Seafloor	20.5m
Average Deployment Depth at site	85m
Weight Breakdown	
Structural Steel	287 tons
Ballast	344 tons
Total installed dry-weight	631 tons
Power	
Cut-in speed	0.7 m/s
Rated speed	1.6 m/s
Rated Power	267 kW
Capacity Factor	32%
Availability	95%
Transmission losses	2%
Net annual generation at bus bar at site	671 MWh / year

Device Performance

Given a velocity distribution for a site, the calculation of extracted and electrical power is discussed in [1]. Site surface velocity distributions have been adjusted to hub height velocity assuming a $1/10^{th}$ power law.

The overall efficiency of the Lunar Energy RTT2000 is the product of rotor efficiency, gearbox efficiency and generator efficiency. The following chart shows the efficiency of the various elements as a function of rated speed as provided by Lunar Energy. In order to get to obtain the relative efficiency of the device, the numbers below should be multiplied by the Betz limit which is 0.593.

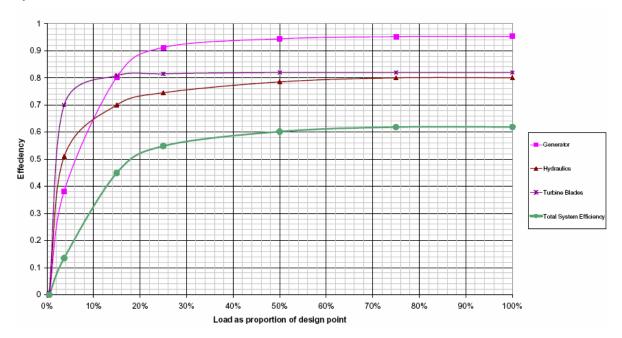


Figure 15 - Efficiency curves of Power Conversion System

Based on this efficiency chain and the exposed duct inlet area the device performance in a given site can be obtained. The following table shows the energy calculations at the Golden Gate site. The following definitions may help the reader understand:

- Flow velocities are depth adjusted using a 1/10 power law and represent the bin midpoint of the fluid speed at hub-height of the TISEC device.
- % Cases represents the percentage of time the flow at the site is at the flow velocity
- % Load represents the electrical output as a percentage of rated output of the device
- Power flux shows the incident power per square meter at the referenced velocity

- Flow power is the power passing through the cross sectional area of the device
- Extracted Power shows the amount of absorbed power

Average values can be found in the last column of the table.

Table 3 – Device Performance at deployment site (depth adjusted)

Fluid Speed m/s	% of Cases	% Load	Pfluid kW/m^2	Pfluid kW	Rotor Eff %	PCS Eff.	Pelectric kW
0.09	5.37%	0.0%	0.00	0	33%	0%	0
0.27	8.71%	0.5%	0.01	4	34%	3%	0
0.46	9.15%	2.3%	0.05	17	39%	11%	0
0.64	9.58%	6.4%	0.13	47	44%	30%	0
0.82	10.76%	13.6%	0.29	99	47%	53%	25
1.01	13.45%	24.9%	0.52	181	48%	68%	59
1.19	17.04%	41.0%	0.86	298	48%	73%	105
1.37	13.53%	63.1%	1.32	458	48%	75%	165
1.55	7.87%	91.8%	1.93	667	48%	76%	245
1.74	3.09%	100.0%	2.69	931	48%	76%	267
1.92	1.26%	100.0%	3.63	1257	48%	76%	267
2.10	0.18%	100.0%	4.77	1651	48%	76%	267
2.29	0.00%	100.0%	6.12	2121	48%	76%	267
2.47	0.00%	100.0%	7.71	2671	48%	76%	267
2.65	0.00%	100.0%	9.56	3310	48%	76%	267
2.84	0.00%	100.0%	11.67	4043	48%	76%	267
3.02	0.00%	100.0%	14.08	4877	48%	76%	267
3.20	0.00%	100.0%	16.80	5819	48%	76%	267
3.38	0.00%	100.0%	19.85	6874	48%	76%	267
3.57	0.00%	100.0%	23.24	8051	48%	76%	267
3.75	0.00%	100.0%	27.01	9354	48%	76%	267
3.93	0.00%	100.0%	31.15	10790	48%	76%	267
4.12	0.00%	100.0%	35.71	12367	48%	76%	267
4.30	0.00%	100.0%	40.68	14091	48%	76%	267
4.66	0.00%	100.0%	51.98	18003	48%	76%	267
4.85	0.00%						
Average			0.73	254			82

Comparison of flow power to electric power generated is shown in Figure 16. Note particularly the cut-in speed (below which no power is generated) and rated speed (above which the power generated is constant).

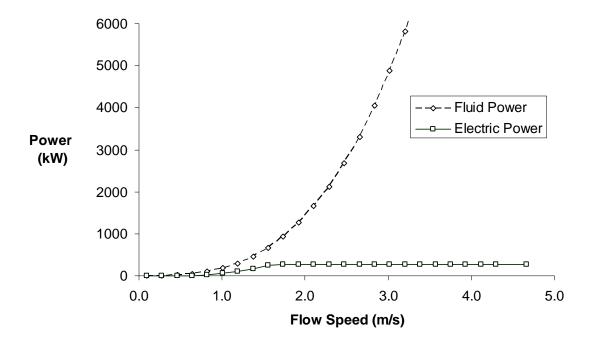


Figure 16 – Comparison of water current speed and electrical power output

The electrical output of the turbine compared to the fluid power crossing the swept area of the rotor is given in Figure 17, for a representative day and in Figure 18 for a Lunar cycle.

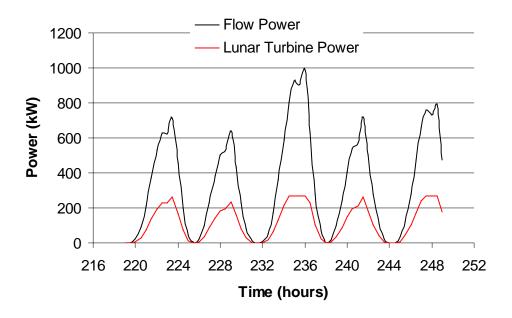


Figure 17 – Variation of flow power and electrical power output at the site

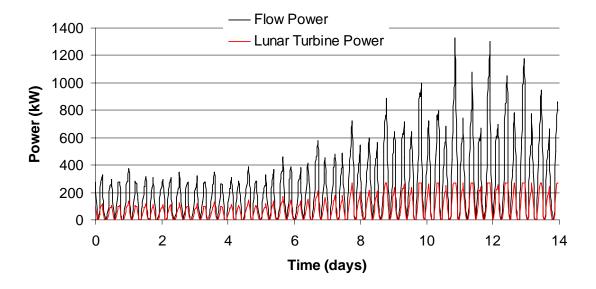


Figure 18 - Variation of flow power and electrical output at the site over a 14 day period

Lunar Device Evolution

Current design efforts carried out by Lunar Energy is focused on value engineering. Whereas the prototype design is in its final phase, the commercial units are expected to benefit from several potential areas of improvements, including:

- Device Streamlining: Improving the overall design envelope to yield less drag, will reduce the stresses on the structure and result in savings on structural elements, foundation cost and weight.
- 2. Use of different materials: Replacing steel with concrete and composites could significantly reduce overall capital cost of the device.
- 3. Improving power train reliability: Improving the reliability of the power conversion system will result in less maintenance and could prove to provide significant savings. In particular replacing existing hydraulic elements with a direct induction generator could cut the number of interventions required over the devices design life by more then 50%.
- 4. Improving power train efficiency: The currently used hydraulic power conversion system shows an efficiency of about 76% at rated capacity. This is low as compared to other power train alternatives having efficiencies of up to 95%.

It is important to understand that none of the above measures would require novel technology and most of the measures could be implemented by means of simple value-engineering. Discussions with Lunar Energy showed that many of these improvements are already under consideration.

In March 2006, Lunar Energy provided EPRI with information on their redesigned prototype the RTT 2000 Mark II. The systems overall structural design was simplified by replacing the concrete base with 3 'steel-can' legs. These steel pipes can be filled with ballast to provide stability against sliding in heavy currents. The duct-steelwork was also streamlined by making the duct a load-carrying element and eliminating the structural frame. While the overall redesign increased the steel-weight slightly, it reduced manufacturing complexities and associated cost.

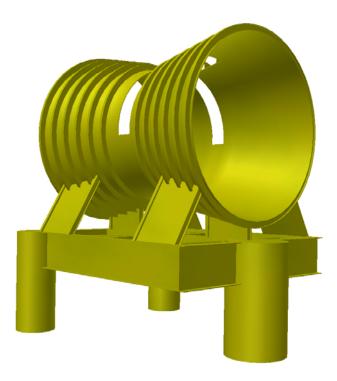


Figure 19 - RTT 2000 Mark II structural design

Installation of Lunar Module

The largest crane barges on the US west coast have capacities of up to 600 tons. With over 2000 tons, Lunar Energy's RTT2000 total system weight is well beyond of what any available crane-barge could handle and one of the big questions that needed to be answered was how this system was to be deployed, recovered and maintained. As a result, a detailed outline was developed of how the deployment and recovery of the device could be accomplished at reasonable cost. For the purpose of this outline we assumed that the device is deployed in two pieces, the concrete base and the duct. The text below outlines the deployment procedure.

The concrete base is constructed on a casting barge in calm, protected waters. The casting barge is then outfitted with four vertical pontoons (3m long), which are attached to each corner of the barge deck to provide stability during barge submersion. After the base is complete, the barge is ballasted until the deck is about 1.5m below the water level. This will allow the completed base shell to float free with a draft of about 1.2m. Once the base is floated off the barge it is sunk to the bottom in a water depth of at least 8m. Riser pipes are

used to control the decent. A transport barge is floated over the base and preinstalled strand jacks are used to lift the base from the seabed until it is directly underneath the barge. The base is then filled with ballast and made ready for deployment. Finally, the barge is towed to it's deployment location and the same strand jacks are used to lower the base to it's prepared seabed.

Both the duct as well as the cassette unit are guided into final position using pre-installed guide wires extending vertically from the base structure to beams extending out in front of a derrick barge. The derrick barge places the duct onto a frame attached to the front of the barge. The duct is then attached to the guide wires and the guide wires are tensioned. Finally the duct is lowered onto the base using strand-jacks and guide wires. After set down, a ROV will disconnect strand jacks and guide wires from the base and duct.

The same procedure can be used to deploy and recover the cassette. The only difference is that the cassette weighs less and as a result a smaller (and less costly) derrick barge can be used.

Scour protection (if required) can be provided by either using concrete infill below the base or by placing articulated concrete mats onto the seabed. Both of these approaches have been successfully used in a number of North American projects.

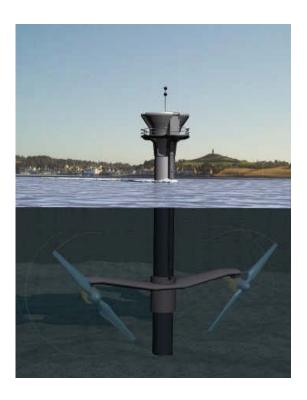
Most installation and maintenance activities can be carried out from a derrick barge. These barges are in operation all over North and Central America and are used for a large variety of construction projects. Figure 20 shows Manson Construction's 600 ton derrick barge WOTAN doing construction work on an offshore drilling rig. Two tug boats are used for positioning the derrick barge and set moorings if required.

Figure 20 - Manson Construction 600 ton Derrick Barge WOTAN operating offshore In heavy currents these barges use a mooring spread that allows them to keep on station and accurately reposition themselves continuously using hydraulic winches controlled by the operator.

A second piece of equipment that becomes really important for subsea installations is the remote operated vehicle (ROV). These systems increasingly replace divers and are used to monitor the subsea operation, visual inspections and carrying out various manipulation tasks such as connecting and disconnecting of guide wires, unplugging electrical cables etc. Technological advances have made these submersibles increasingly capable, in many instances eliminating the need to send down divers. This in turn reduces cost while increasing safety. A typical dual manipulator arm ROV making an underwater electrical connection is shown in Figure 21.

Figure 21 – Remotely Operated Vehicle (ROV) – ROV making electrical connection (courtesy of Schilling Robotics - www.ssaalliance.com)

Operational Activities Lunar Energy


The O&M philosophy of Lunar Energy's RTT 2000 is to provide a reliable design that would require a minimal amount of intervention over its lifetime. In order to accomplish this Lunar Energy decided early on to use highly reliable and proven components even if that meant lower power conversion efficiency and performance as a result. All of the power conversion equipment of the RTT 2000 is mounted on a cassette, which can be removed from the duct and brought into a port to carry out operation and maintenance activities. The fact that the device is completely submersed makes its operation very dependent on attaining claimed reliability as each repair requires the recovery of the duct which requires specialized equipment. Lunar Energy has addressed this issue by optimizing its operation and maintenance strategy for minimal intervention. It is expected that the cassette is swapped out every 4 years and undergoes a complete overhaul after which it is ready to operate for another 4 years. The critical components prone to failure in the power conversion system are the hydraulic power conversion system. Given the high cost for maintenance intervention, reliability of the system becomes a critical attribute of the system, which will need to be proven on a prototype system. The L90 life of a component specifies after how much time 10% of components will fail (i.e. 90% of the components are still in good order therefore the term L90). The most critical hydraulic component of the RTT2000 has a L90 life of 5 years (meaning that after 5 years 90% of all devices are still operating

without any issues). Given a typical Weibull failure distribution it was deemed that a 4-year service interval as proposed by the company is a sensitive approach.

4. Marine Current Turbines

The Marine Current Turbine (MCT) SeaGen free flow water power conversion device has twin open axial flow rotors (propeller type) mounted on "wings" either side of a monopile support structure which is installed in the seabed. Rotors have full span pitch control and drive induction generators at variable speed through three stage gearboxes. Gearboxes and generators are submersible devices the casings of which are exposed directly to the passing sea water for efficient cooling. A patented and important feature of the technology is that the entire wing together with the rotors can be raised up the pile above the water surface for maintenance. Blade pitch is rotated 180° at slack water to accommodate bi-directional tides without requiring a separate yaw control mechanism. This device is illustrated in Figure 22.

Operation Maintenance
Figure 22 – MCT SeaGen (courtesy of MCT)

(This figure prints upside down courtesy of Microsoft or our lack of MS Word skills)

A 1.2 MW prototype SeaGen is presently being built and is scheduled for UK deployment in the fall of 2006. SeaGen is intended as a commercial prototype (not proof of concept) – and incorporates important learnings from SeaFlow, a 300kW single rotor test rig (Figure 23), which has been in operation for about 3 years. SeaFlow tested many of the features of SeaGen and has informed the design process by providing large amounts of data. The photo shows the rotor raised out of the water for maintenance – the submersible gearbox and generator are clearly visible. The rotor diameter is 11m and the pile diameter is 2.1m.

Operation Maintenance
Figure 23 – MCT SeaFlow Test Unit (courtesy of MCT)
(In printed from,' the pictures are upside down courtesy of Microsoft or our MS Word skills)

Device Performance

Given a velocity distribution for a site, the calculation of extracted and electrical power is discussed in [1]. Site surface velocity distributions have been adjusted to hub height velocity assuming a $1/10^{th}$ power law.

The overall efficiency of the MCT SeaGen is the product of:

- Rotor: constant efficiency = 45%
- Gearbox: efficiency at rated power = 96%
- Generator: maximum efficiency = 98%

The efficiency of the gearbox and generator is expressed as a function of the load on the turbine (% load). Power Conversion System efficiency (PCS) is assumed to follow the same form as for a conventional wind turbine drive train – which can be approximated by the following function:

$$\eta_{BOS} = 0.8337 e^{0.1467 \left(\% \, \text{Load}\right)} - 0.7426 e^{-33.89 \left(\% \, \text{Load}\right)}$$

The performance of a single turbine deployed at the site is shown in

Table 4. Average values can be found in the last row of the table.

Table 4 – Device Performance

Fluid Speed m/s	% of Cases	% Load	Pfluid kW/m^2	Pfluid kW	Pextracte d kW	PCS %	Pelectric kW
0.09	5.37%	0.0%	0.00	0	0	9.86%	0
0.28	8.71%	0.8%	0.01	6	0	26.84%	0
0.47	9.15%	3.7%	0.05	27	0	62.66%	0
0.66	9.58%	10.2%	0.15	75	0	82.25%	0
0.85	10.76%	21.6%	0.31	160	72	86.00%	62
1.04	13.45%	39.4%	0.57	292	132	88.34%	116
1.23	17.04%	65.1%	0.95	483	217	91.72%	199
1.42	13.53%	100.0%	1.46	742	334	94.08%	314
1.61	7.87%	100.0%	2.12	1080	334	94.08%	314
1.80	3.09%	100.0%	2.96	1507	334	94.08%	314
1.98	1.26%	100.0%	4.00	2035	334	94.08%	314
2.17	0.18%	100.0%	5.25	2674	334	94.08%	314
2.36	0.00%	100.0%	6.75	3434	334	94.08%	314
2.55	0.00%	100.0%	8.50	4325	334	94.08%	314
2.74	0.00%	100.0%	10.53	5360	334	94.08%	314
2.93	0.00%	100.0%	12.86	6547	334	94.08%	314
3.12	0.00%	100.0%	15.52	7897	334	94.08%	314
3.31	0.00%	100.0%	18.51	9422	334	94.08%	314
3.50	0.00%	100.0%	21.87	11131	334	94.08%	314
3.68	0.00%	100.0%	25.61	13035	334	94.08%	314
3.87	0.00%	100.0%	29.76	15146	334	94.08%	314
4.06	0.00%	100.0%	34.33	17472	334	94.08%	314
4.25	0.00%	100.0%	39.35	20025	334	94.08%	314
4.44	0.00%	100.0%	44.83	22815	334	94.08%	314
4.63	0.00%	100.0%	50.80	25854	334	94.08%	314
4.82	0.00%	100.0%	57.28	29150	334	94.08%	314
5.01	0.00%	100.0%	64.28	32716	334	94.08%	314
Average '	Values		0.81	411	149	<u></u>	138

comparison of flow power to electric power generated is shown in Figure 24. Note particularly the cut-in speed (below which no power is generated) and rated speed (above which the power generated is constant).

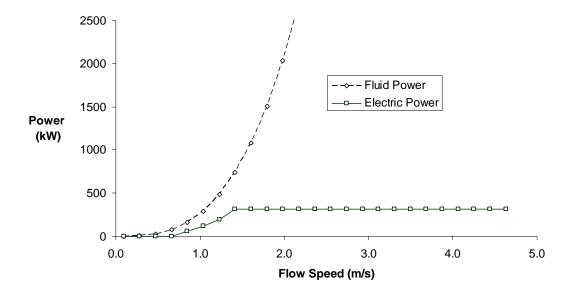


Figure 24 – Comparison of water current speed and electrical power output

The electrical output of the turbine compared to the fluid power crossing the swept area of the rotor is given in Figure 25, for a representative day and in Figure 26 over a 14 day period. The effect of truncating turbine output at rated conditions is obvious.

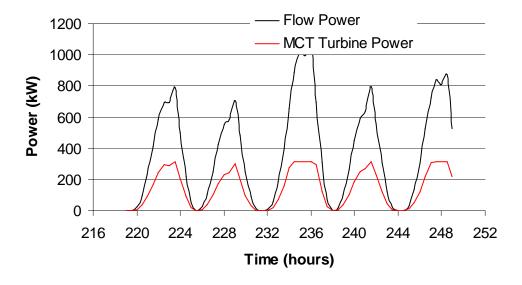


Figure 25 – Variation of flow power and electrical power output at the site

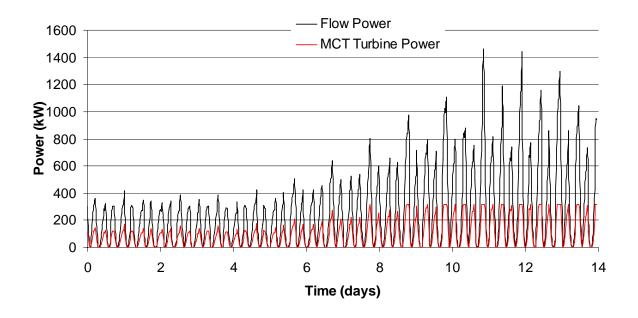
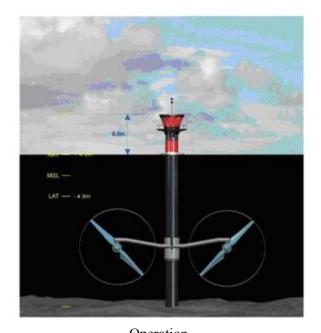
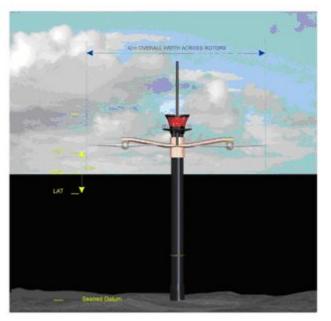


Figure 26 - Variation of flow power and electrical power output at the site over a lunar cycle

Device Specification

While in principle SeaGen is scalable and adaptable to different site conditions in various ways, EPRI used the 18m dual rotor version and optimized the system to local site conditions to estimate device cost parameters. The following provides specifications which are later used to estimate device cost. Since MCT's second generation completely submersed concept is not yet designed for manufacturing, EPRI was not able to do an independent cost analysis for it. Therefore the costing model represents an installation depth of 30m (which is representative of MCTs SeaGen technology). Based on discussions with MCT it is reasonable to expect that subsequent generation devices will have similar capital cost.


Table 5 – SeaGen Device Specification optimized for the Dog island transect site


•	inized for the Dog Island transcet site
Generic Device Specs	
Speed Increaser	Planetary gear box
Electrical Output	Synchronized to grid
Foundation	Monopile drilled and grouted into bedrock
Average Deployment Water Depth	30m
Dimensions	
Pile Length	68m
Pile Diameter	3.5m
Rotor Diameter	18m
# Rotors per SeaGen	2
Rotor Tip to Tip spacing	46m
Hub Height above Seafloor	17m
Weight Breakdown	
Monopile	81 tons
Cross Arm	55 tons
Total steel weight	136 tons
Performance	
Cut-in speed	0.7 m/s
Rated speed (optimized to site)	1.42 m/s
Rated Electric Power	314 kW
Capacity Factor	41%
Availability	95%
Transmission efficiency	98%
Net annual generation at bus bar	1,123 MWh/year

MCT Device Evolution

MCTs first commercial unit, the SeaGen has been designed for a target water depth of less then 50m using a surface piercing monopile, which will allow low cost access to the devices critical components such as the rotor, power conversion system, gearbox etc. This configuration is shown in Figure 27.

Operation
Figure 27 – MCT SeaGen (courtesy of MCT)

Maintenance

This configuration is not necessarily suitable for all sites for two reasons. First, deployment in deep water would be difficult and expensive. Second, surface piercing turbines are incompatible in some channels due to interference with shipping traffic. Since a number of sites prospective sites in North America are located in deeper water or in shipping channels, MCT has revealed a conceptual design for a deep-water, non-surface piercing turbine. It is based on MCTs existing turbine technology with an arrangement to raise the whole system to the surface where it can be accessed easily for operation and maintenance purposes. A preliminary review suggests that capital and operational costs are likely going to be in a similar range then for the SeaGen unit for which detailed cost models were built to evaluate the technology's economics in selected sites in North America.

Since a number of prospective sites in North America are located in deeper water or in shipping channels, MCT is considering a number of conceptual designs for deep-water, non-surface piercing installations. These next-generation devices would use the same power train as the SeaGen, but attached to a different support structure. Figure 28 shows a conceptual illustration of such a design.

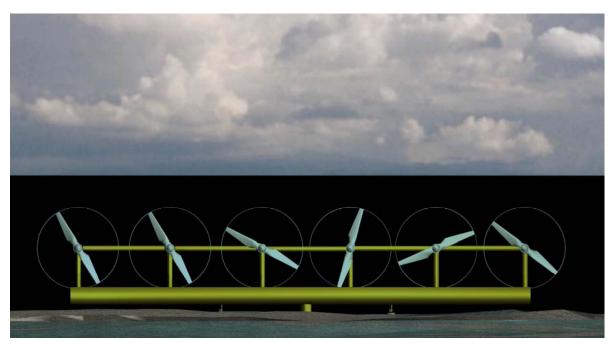


Figure 28 - MCT next generation conceptual illustration

A lifting mechanism (type to be determined) to surface the array for maintenance and repair without the use of specialized craft remains an integral part of MCT's design philosophy and would be present in any next-generation design. MCT is also investigating the use of gravity foundations instead of monopiles for certain sites.

MCT anticipates that maintenance of a completely submerged turbine will be more complicated than for a surface piercing structure. As a result, deployment of completely submerged turbines is contingent upon proving the reliability of the SeaGen power train.

Monopile Foundations

The MCT SeaGen is secured to the seabed using monopile foundation. Figure 29 shows a representative simulation of seabed/pile interaction. Near the surface the seabed yields due to stresses on the pile, but deforms elastically below a certain depth.

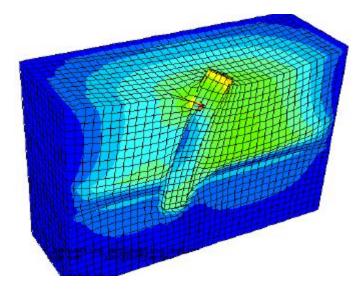


Figure 29 - Simulation of pile-soil interaction subject to lateral load (Source: Danish Geotechnical Institute)

Simulations such as the one shown above require detailed knowledge of the local soil conditions. Because this study did not perform any detailed geophysical assessment, three different types of soil conditions were chosen to model the pile thickness based on a simplified mechanical model:

- Bedrock
- Bedrock with 10m of sediment overburden
- Soft sediments

The design criterion was to limit maximum stresses to 120N/mm² and account for corrosion over the pile life. For Head Harbour Passage, the seabed is modeled as bedrock.

Figure 30 shows the range of pile weights as a function of design velocity (the maximum occurring fluid velocity at the site). These curves were then directly used to estimate capital costs of the piles depending on local site conditions. While the model is well suited for a first order estimate, it is important to understand that the detailed design phase may show deviation from EPRI's base model.

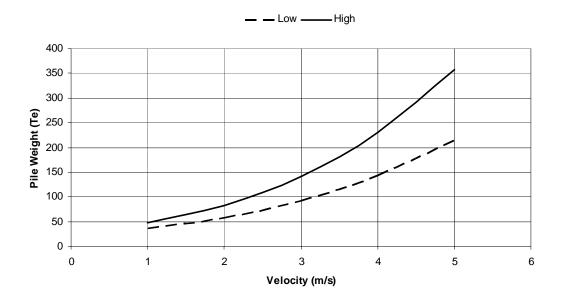


Figure 30 - Pile Weight as a function of design velocity for different sediment types

Pile Installation

MCT proposes to install their large diameter monopiles (3.5m - 4m outer diameter) using a jack-up barge. This is consistent with other European offshore wind projects that have used such barges to deploy offshore wind turbine foundations. While a few operators were found on the east-coast that use jack-up barges, most of them are used in the Gulf of Mexico and no suitable jack-up barge was found on the US west coast. Given the expense of mobilizing marine construction equipment from the Gulf of Mexico, EPRI decided to investigate lower-cost alternatives. The following outline shows the installation of a pile in bedrock from a jack-up barge.

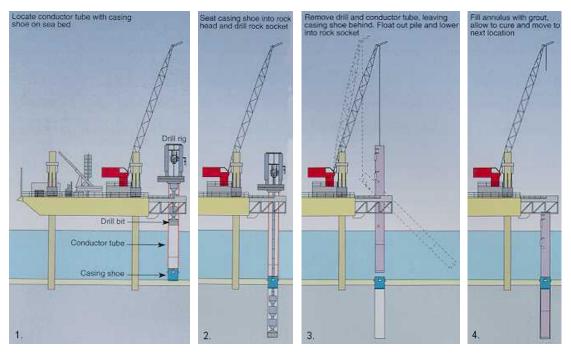


Figure 31 – Pile Installed in Bedrock (Seacore)

While jack-up barges are not commonly available in US waters, there are a significant number of crane barges available from which the installation of theses piles could be carried out. These derrick barges operate on the US west and east coast and are extensively used for construction projects in heavy currents such as rivers. Typical construction projects include the construction of bridges, cofferdams and pile installations. Crane capacities vary with some of the largest derrick barges being able to lift up to 600 tons. To carry out the installation of these relatively large 3.5m diameter piles, it was determined that a crane capacity of about 400 tons or more would be adequate to handle the piles, drilling bits and other installation equipment. Figure 27 shows Manson Construction's 600 ton derrick barge WOTAN doing construction work on an offshore drilling rig. Two tug boats are used for positioning the derrick barge and set moorings if required.

Figure 32 - 600 ton Derrick Barge WOTAN operating offshore (Manson Construction)

In heavy currents these barges use a mooring spread that allows them to keep on station and accurately reposition themselves continuously using hydraulic winches controlled by the operator.

Working from a barge, rather then from a jack-up platform does not set hard limits on the water depth in which piles can be installed. Some preliminary studies suggest that type of pile required for the MCT SeaGen device could be installed in water depths of as much as 90m. However such a configuration may not be cost effective due to high cost. In the offshore industry, piles are oftentimes used as mooring points for offshore structures. Installation of driven piles in water depths of more then 300m is not uncommon. It is, however, clear that pile installation in deeper waters becomes more costly and presents a limiting factor to their viability. Several options exist for installing piles, but it is important to stress that few marine construction companies in the US have experience with the installation of large piles in high current waters. Potential construction methods include:

• Driving piles using a hydraulic hammer

- Combination of water jetting and vibratory hammer
- Drill and socket a sleeve, then grout pile in place

Each of these methods has advantages and disadvantages. A drilled pile installation would involve drilling into the consolidated sediments and stabilizing the walls of the drill hole with a metal sleeve (follower). Once the hole has been drilled to a suitable depth, the pile is inserted and grouted into place. This method of installation is preferred by MCT to limit excessive pile fatigue during the installation process and drilling is required in most locations because of bedrock that would need to be penetrated.

Operational and Maintenance Activities

The guiding philosophy behind the MCT design is to provide low cost access to critical turbine systems. Since an integrated lifting mechanism on the pile (or level arm for the next generation design) can lift the rotor and all subsystems out of the water, general maintenance activities do not require specialized ships or personnel (e.g. divers). The overall design philosophy appears to be that the risks associated with long-term underwater operation are best offset by simplifying scheduled and unscheduled maintenance tasks. The only activity that could require use of divers or ROVs would be repairs to the lifting mechanism or inspection of the monopile, none of which are likely to be required over the project life.

Annual inspection and maintenance activities are carried out using a small crew of 2-3 technicians on the device itself. Tasks involved in this annual maintenance cycle include activities such as; replacement of gearbox oil, applying bearing grease and changing oil filters. In addition, all electrical equipment can be checked during this inspection cycle and repairs carried out if required. Access to the main structure can be carried out safely using a small craft such as a RIB (Rigid Inflatable Boat) in most sea conditions.

Figure 33: Typical Rigid Inflatable Boat (RIB)

For repairs on larger subsystems such as the gearbox, the individual components can be hoisted out with a crane or winch and placed onto a motorized barge. The barge can then convey the systems ashore for overhaul, repair or replacement. For the purpose of estimating the likely O&M cost, the mean time to failure was estimated for each component to determine the resulting annual operational and replacement cost. Based on wind-turbine data, the most critical component is the gearbox which shows an average mean time to failure of 10.8 years.

For the next generation design for a completely submerged turbine (assumed for commercial plant) major intervention could require the use of a crane barge to dismount the power train from the support structure. Since the lifting mechanism would also be subsurface, a failsafe retrieval method (e.g. retrieval hook) would be required in the case of a failure of the lifting mechanism. MCT does not anticipate the added complexity of full submergence to greatly increase maintenance costs, because deployment of a fully submerged device is contingent on proving that the chosen power train requires limited maintenance intervention.

5. Electrical Interconnection

Each TISEC device houses a step-up transformer to increase the voltage from generator voltage to a suitable array interconnection voltage. The choice of the voltage level of this energy collector system is driven by the grid interconnection requirements and the array electrical interconnection design but is typically between 12kV and 40kV. For the pilot scale, 12kV systems are anticipated – depending on local interconnection voltages. This will allow the device interconnection on the distribution level. For commercial scale arrays, voltage levels of 33kV are used. This allows the interconnection of an array with a rated capacity of up to about 40MW on a single cable.

A fiber core is used to establish reliable communication between the devices and a shore-based supervisory system. Remote diagnostic and device management features are important from an O&M stand-point as it allows to pin-point specific issues or failures on each unit, reducing the physical intervention requirements on the device and optimizing operational activities. Operational activities offshore are expensive and minimizing such interventions is a critical component of any operational strategy in this harsh environment.

The Surface piercing MCT SeaGen device has all it's electrical components located inside the monopile, where it is well protected and easily accessible for operation and maintenance activities. In other words, sub sea connectors or junction boxes are not required to interconnect the device to the electrical grid.

The completely submersed Lunar Energy Device houses all the generation equipment and step-up transformer in cylindrical watertight container mounted on the cassette, which needs to be recovered to the surface for servicing. Interconnection is envisioned to be accomplished using a pressure compensated junction box that allows a single device to be connected to a device cluster. The cassette can be interconnected by either using sub sea wet-mate cable connectors or using a flexible cable that is attached to the cassette so that it can be connected and disconnected on the surface.

Subsea Cabling

Umbilical cables to connect turbines to shore are being used in the offshore oil & gas industry and for the inter-connection of different locations or entire islands. With other words, it is well established technology with a long track-record. In order to make these cables suitable for in-ocean use, they are equipped with water-tight insulation and additional armor, which protects the cables from the harsh ocean environment and the high stress levels experienced during the cable laying operation. Submersible power cables are vulnerable to damage and need to be buried into soft sediments on the ocean floor. While traditionally, sub-sea cables have been oil-insulated, recent offshore wind projects in Europe, showed that the environmental risks prohibit the use of such cables in the sensitive coastal environment. XLPE insulations have proven to be an excellent alternative, having no such potential hazards associated with its operation. Figure 34 shows the cross-sections of armored XLPE insulated submersible cables.

Figure 34 – Armored submarine cables

For this project, 3 phase cables with double armor and a fiber core are being used. The fiber core allows data transmission between the units and an operator station on shore. In order to protect the cable properly from damage such as an anchor of a fishing boat, the cable is buried into soft sediments along a predetermined route. There are different technologies available to bury the cable along the cable route. All of them require the creation of a trench in which the cable can be laid. In order to protect the cable, this channel is then back-filled with rocks. Various trenching technologies exist such as the use of a plough in soft sediments, use of a subsea rock-saw in rock (if going through hard-rock) or the use of water jets. All of these cable laying operations can be carried out from a derrick barge that

is properly outfitted for the particular job. The choice of technology best suited for getting the job done depends largely on the outcome of detailed geophysical assessments along the cable route. For this study, the EPRI team assessed both the use of a trenching rock saw as well as a plough.

An important part of bringing power back to shore is the cable landing. Existing easements should be used wherever possible to drive down costs and avoid permitting issues. If they do not exist, directional drilling is the method with the least impact on the environment. Directional drilling is a well established method to land such cables from the shoreline into the ocean and has been used quite extensively to land fiber optic cables on shore. Given some of the deployment location proximity to shore, detailed engineering might even reveal that directional drilling directly to the deployment site is possible. This would reduce environmental construction impacts at the site, while reducing overall cost.

Onshore Cabling and Grid Interconnection

Traditional overland transmission is used to transmit power from the shoreline to a suitable grid interconnection point. Grid interconnection requirements are driven by local utility requirements. At the very least, breaker circuits need to be installed to protect the grid infrastructure from system faults. VAR compensation voltage step-up and other measures might be introduced based on particular local requirements.

6. System Design - Pilot Plant

The purpose of a pilot plant is first, and foremost, to demonstrate the viability of a particular technology. Pilot plants are, in general, not expected to produce cost competitive electricity and often incorporate instrumentation absent from a commercial device.

For the pilot TISEC plant, the following should be successfully demonstrated prior to installation of a commercial array:

- Turbine output meets predictions for site
- Installation according to design plan with no significant problems
- Turbine operates reliably, without excessive maintenance intervention
- No significant environmental impacts for both installation as well as operational aspects.

For the pilot plant, the following issues deserve particular attention and should be an integral part of the pilot testing plan:

- Large marine mammal and fish interaction with turbine. This will require instrumentation for fish monitoring.
- Bio-accumulation on turbine and support structure over course of demonstration.

The following illustration shows how a single TISEC device is connected to the electric grid.

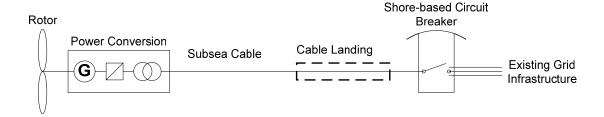


Figure 35 - Conceptual Electrical Design for a single TISEC Unit

Pilot power collection and grid interconnection details are summarized in Table 6 – Pilot Grid Interconnection. The cost for overland interconnection is for routing the power take-off cable from the beach to distribution line. Infrastructure upgrade costs are expected to be minor since power is being fed into an existing distribution line.

Table 6 – Pilot Grid Interconnection

Grid Interconnection Demo	
Grid Interconnection Point	69 kV transmission line close to cable landing
Subsea Cable Length	1000m
Subsea Trench Length	500m
Sediment type along cable route	Bedrock/Gravel/Mud
Cable Landing	Directional Drilling
Overland Interconnection Cost	Estimated at \$250,000
Infrastructure Upgrade Cost	None assumed

The deployment location for a single unit is described in the site selection section and turbine performance is outlined in the performance section.

7. System Design - Commercial TISEC Power Plant

The purpose of a commercial tidal plant is to generate cost competitive electricity for the grid without causing unacceptable environmental impacts. The single largest impact on the cost of electricity for a TISEC farm is the current velocity profile. The reason is that structural loads (and corresponding structural cost) increase to the second power of velocity, while the power generated increase to the 3rd power of the velocity. In a channel the fluid velocity will increase in narrow passages. So the channel transect with the lowest cross-sectional area will generally prove to be the most economic one.

Other factors considered in the design of this commercial tidal power plant are:

- Install turbines only in waters sufficiently deep to meet shipping clearance requirements
- Turbines are not to extract more then 15% of the total estimated resource
- Locate the plant in close proximity to a grid interconnection point to reduce costs

For purposes of establishing a conceptual design point, we assumed that either MCT's next generation multi-rotor machine or Lunar Energy's RTT2000 would be installed at the site. Both of these designs are completely submersed and do not directly interfere with any shipping activities when in operation. Only installation and O&M activities will interfere directly with surface based activities. It is reasonable that such activities can be coordinated so as not to conflict with other uses of the sea space. For design and cost estimate purposes we assumed that the commercial MCT design use the same rotor diameter and clearance requirements as the surface piercing SeaGen device.

Electrical Interconnection

In order to interconnect a large number of turbines to the electric grid, a power collection network needs to be set up. In order to maximize availability and stay within reasonable limits on the amount of electrical power fed back to shore per single cable devices are arranged in clusters. Each cluster connects back to shore using a single cable. This allows a cluster of devices to be isolated if required.

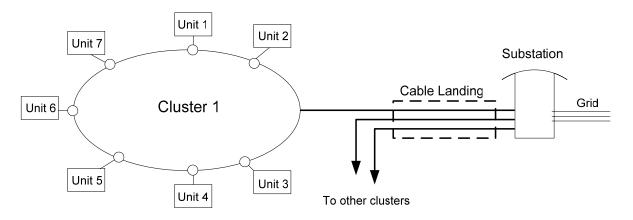


Figure 36 - Electrical Power Collection and Grid Interconnection for commercial plant

Physical Layout

In order to extract 15% of the resource at the site, more then 45% of the cross-sectional area needs to be intersected. Figure 37 shows a nautical map of the deployment area of interest. There are two areas of particular interest one area shown in green for MCT's surface piercing SeaGen and one area shown in red for fully submersible technology such as MCT's second generation technology and Lunar Energy's RTT2000. It is unclear what the local velocities are at the site and therefore it is impossible to determine at present where such turbines should be installed. Detailed modeling of the resource would reveal hot-spots and provide more information as to where such turbines should be located. It also might be that the Casco Bay Island and the irregularities of the seafloor around the shallow deployment site provides a shadowing effect onto the shallow water deployment site (shown in green). Therefore it was decided to stick with the deep-water portion of the channel (shown in red) as the flow is likely more homogenous there. The area suitable for deployment is about 500m wide and 2000m long.

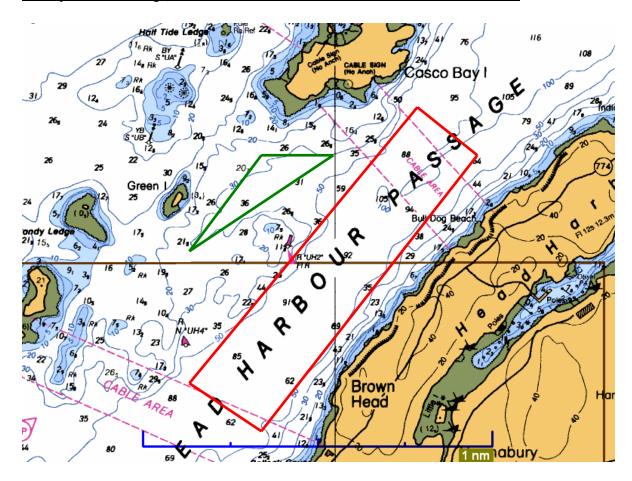


Figure 37 - NB Deployment Site. Water depth shown in meters

Since the deployment site is directly below a navigation route used by large ships, a navigation clearance of 15m (below LAT) is required. The following illustration shows the cross section of the channel and the turbine height for MCT's machine with a rotor diameter of 18m and a total height from seafloor of 26m and Lunar energy's turbine with a rotor diameter of 21m and a total height from the seafloor of 31m. Adding a 15m navigation clearance to these turbine heights, only water depths of more then 41m (for MCT), respectively 46m (for Lunar's RTT2000) are suitable. The following two figures show the turbine size and spacing assumptions for both turbines.

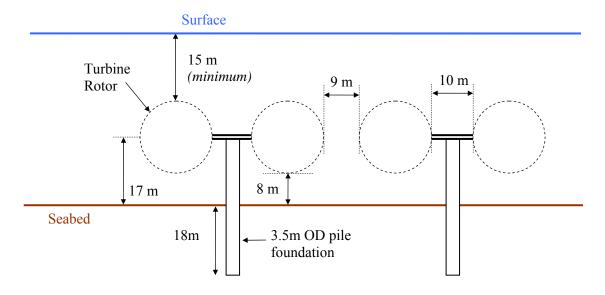


Figure 38 – MCT SeaGen Turbine Spacing Assumptions

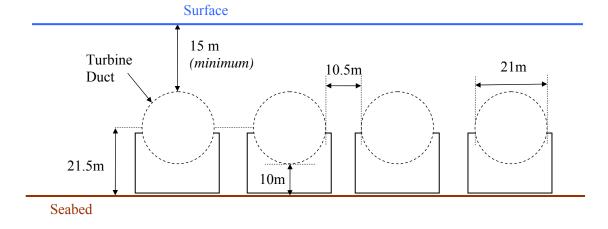


Figure 39 - Lunar RTT 2000 Spacing Assumptions

Based on this cross section, the useable channel width that accommodates sufficient water depth within is about 500m. The section length within which high fluid velocities are available is about 2000m (See Figure 37). Based on this data the following table summarizes the critical assumptions leading to the likely number of turbines that could be deployed at the site.

Table 7 - Physical Layout Properties

	MCT	Lunar
Turbine Diameter	2 x 18m	21m
Device Width	46m	21m
Device Spacing	9m	10.5m
Channel width per device	55m	31.5m
Downstream Spacing	185m	235m
Useful Channel Length	2000m	2000m
Useful Channel Width	500m	500m
# of Turbines per Row	9	16
# of Rows	11	9
Total # of Turbines deployable	99	144
Average Power Extracted per Turbine	128 kW	106 kW
15% Extraction Limit	8.5 MW	8.5 MW
Technology Specific Extraction Limit	12.7 MW	15.3 MW

The above table shows that the extraction is environmentally limited. Both technologies looked at show similar extraction limits. The channel length of interest was defined as 2000m long. It could very well be that the total channel length is much longer within which we can find current velocities suitable for extraction. Further modeling of the resource and local measurements could reveal hot-spots for the deployment of devices.

8. Cost Assessment – Demonstration Plant - \$ in 2005 USD

The cost assessment of the pilot demonstration plant was carried out by taking manufacturer specifications for MCT's SeaGen device, assessing principal loads on the structure and scaling the devices to the design velocity at the deployment site. While the MCT cost model was developed internally by EPRI, MCT provided data and support to calibrate the model, which was an important step to come up with a meaningful model. Installation and operational costs were evaluated by creating detailed cost build-ups for these aspects taking into considerations equipment availability and North American rates. A high-level capital cost breakdown relevant to the deployment site is shown in the table below.

Table 8 - Capital Cost breakdown of MCT Pilot plant

	\$/kW	\$/Turbine	in %
Power Conversion System	\$1,428	\$442,000	11.6%
Structural Steel Elements	\$1,046	\$324,000	8.5%
Subsea Cable Cost	\$349	\$108,000	2.8%
		\$1,442,00	
Turbine Installation	\$4,658	0	38.0%
		\$1,232,00	
Subsea Cable Installation	\$3,980	0	32.4%
Onshore Electric Grid			
Interconnection	\$808	\$250,000	6.6%
	\$12,26	\$3,798,00	
Total Installed Cost	8	0	100.0%

A single unit will cost significantly more then subsequent units installed at the site. This is apparent by an increase in capital and installation cost. Installation costs are dominated by mobilization charges and the fact that the first unit will always be more expensive then subsequent ones. Capital costs are higher as well for similar reasons. The assessment of operational and maintenance cost was not part of the scope of this study. It is important to understand that subsea cable installation cost could be potentially reduced by up to \$1 million by careful siting of the prototype and use of directional drilling instead of trenching.

It is also important to understand that the purpose of the pilot plant is not to provide low cost electricity, but to reduce risks associated with a full-blown commercial scheme. Risks include technological risks such as device performance, operation & maintenance requirements and validation of structural integrity as well as environmental risks associated with the interaction between the natural habitat and the TISEC device.

9. Cost Assessment - Commercial Plant - \$ in 2005 USD

Costs for the commercial plant are, as for most renewable energy generating technologies, heavily weighted towards up-front capital. In order to determine the major cost centers of the commercial plant, detailed cost build-ups were created in order to assess them properly in the context of the given site conditions. There are a few major influences impacting the relative economic cost at a particular site which are discussed below:

Design Current Speed: The design current speed is the maximum velocity of the water expected to occur at the site. Structural loads (and related structural cost) on a structure increase to the second power of the fluid velocity. Given the velocity distribution at the site, the design velocity can be well above the velocity at which it is economically useful to extract power. In other words, the design velocity can have a major influence on the cost of the structural elements. During normal operating conditions, the loads on the structure will peak near the rated turbine velocity and decrease thereafter as the turbine blades are pitched to maintain constant power output, decreasing the thrust coefficient on the rotor blades. For conservatism, the design velocity is set to the site peak, rather than device rating, in order to simulate the loads experienced during runaway operation in the event of pitch control failure.

Velocity Distribution: The velocity distribution at the site is outlined in chapter 2 of this report. It shows the tidal current velocities at which there is a useful number of reoccurrence to pay for the capital cost which is needed to tap into this velocity bin. Rather then trying to make assumptions on where the appropriate rated velocity of the TISEC device should be, an iterative approach was chosen to determine which rated speed of the machine will yield the lowest cost of electricity at the particular site. This in turn resulted in different machine capacity factors as rated speed of the machine was adjusted for lowest cost of electricity.

Seabed Composition: The seabed composition at the site has a major impact on the foundation design of the TISEC device. For a monopile foundation the seabed composition determines the installation procedure (i.e. drilling and grouting or pile driving). The soil-

type will also impact the cost of the monopile. Typically soft soils yield higher monopile cost then rock foundations. For a bottom standing device there is a cost impact on the installation for seabed preparation, scour protection and assuring device stability in weak soils.

Number of installed units: The number of TISEC devices deployed has a major influence on the resulting cost of energy. In general a larger number of units will result in lower cost of electricity. There are several reasons for this which are outlined below:

- Infrastructure cost required to interconnect the devices to the electric grid can be shared and therefore their cost per unit of electricity produced is lower.
- Installation cost per turbine is lower because mobilization cost can be shared between multiple devices. It is also apparent that the installation of the first unit is more expensive then subsequent units as the installation contractor is able to increase their operational efficiency.
- Capital cost per turbine is lower because manufacturing of multiple devices will result in reduction of cost. The cost of manufactured steel as an example is very labor intensive. The cost of hot rolled steel plates as of July 2005 was \$650 per ton. The final product can however cost as much as \$4500 per manufactured ton of steel. With other words there is significant potential to reduce capital cost by introducing more efficient manufacturing processes and engineering a structure in such a way that it can be manufactured cost effectively. The capital cost for all other equipment and parts is very similar.

Device Reliability and O&M procedures: The device component reliability directly impacts the operation and maintenance cost of a device. It is important to understand that it is not only the component that needs to be replaced, but that the actual operation required to recover the component can dominate the cost. Additional cost of the failure is incurred by the downtime of the device and its inability to generate revenues by producing electricity. In order to determine these operational costs, the failure rate on a per component basis was

estimated. Then operational procedures were outlined to replace these components and carry out routine maintenance such as changing the oil. The access arrangement plays a critical role in determining what kind of maintenance strategy is pursued and the resulting total operation cost.

Insurance cost: The insurance cost can vary greatly depending on what the project risks are. While this is an area of uncertainty, especially considering the novelty of the technologies used and the likely lack of specific standards, it was assumed that a commercial farm will incur insurance costs similar to mature an offshore project which is typically at about 1.5% of installed cost.

The following table shows a cost breakdown of a commercial TISEC farm at the deployment site. It was assumed that a total of 66 turbines are installed at the site each one with a rated capacity of 310 kW and a capacity factor of 35%, delivering a total of 63,504MWh per year to the electric grid, limited by the 15% extraction limit at the site.

Table 9 – MCT commercial plant capital cost breakdown

	\$/kW	\$/Turbine	\$/Farm	in %	Ref
Power Conversion System	\$657	\$203,272	\$13,416,000	19.9%	1
Structural Elements	\$1,001	\$309,960	\$20,457,000	30.3%	2
Subsea Cable Cost	\$59	\$18,335	\$1,210,000	1.8%	3
Turbine Installation	\$1,034	\$320,216	\$21,134,000	31.3%	4
Subsea Cable Installation	\$531	\$164,305	\$10,844,000	16.1%	5
Onshore Electric Grid Interconection	\$24	\$7,576	\$500,000	0.7%	6
Total Installed Cost	\$3,307	\$994,113	\$67,562,000	100%	
O&M Cost	\$61	\$18,790	\$1,240,168	55%	7
Annual Insurance Cost	\$50	\$14,912	\$1,013,427	45%	8
Total annual O&M cost	\$110	\$33,702	\$2,253,595	100%	

1. Power conversion system cost includes all elements required to go from fluid power to electrical power suitable to interconnect to the TISEC farm electrical collector system. As such it includes rotor blades, speed increaser, generator, grid synchronization and step-up transformer. The cost is based on a drive-train cost

study by NREL [12] with necessary adjustments made such as marinization, gearing-ratio, rotational speed and turbine blade length. Manufacturing cost progress ratio's were used to scale to different production volumes.

- 2. Structural steel elements include all elements required to hold the turbine in place. In the case of MCT, it includes the monopile and the cross arm. For the Lunar turbine it includes all the structural members, the duct as well as ballast. In order to determine the amount of steel required, the manufacturer's data was scaled based on the estimated loads on the structure. Only principal loads based on the fluid velocity were considered and it was assumed that they are the driving factor. While this approach is well suited for a conceptual study, it needs to be stressed that other loading conditions such as wave loads or resonance conditions can potentially dominate and will need to be taken into consideration in a detailed design phase.
- 3. Sub sea cable cost includes the cable cost to collect the electricity from the turbines and bring the electricity to shore at a suitable location.
- 4. Turbine installation cost includes all cost components to install the turbines. Detailed models were developed to outline the deployment procedures using heavy offshore equipment such as crane barges, tugs, supply vessels drilling equipment, mobilization charges and crew cost. Discussions with experienced contractors and offshore engineers were used to solidify costs.
- 5. Subsea cable installation cost includes, trenching, cable laying and trench back-fill using a derrick barge. It also includes cable landing costs. If existing easements such as pipes or existing pier or bridge structures are in place, the cable can be landed on shore using these easements. If not, it was assumed that directional drilling is used to bring the cable to shore.
- 6. Onshore electrical grid interconnection includes all cost components required to bring the power to the selected substation. Cost components required to build-out the capabilities of the substation or upgrade the transmission capacity of the electric

grid were excluded. Under FERC regulations, such cost is covered by 'wires' charges and is not considered to be a part of the levelized busbar plant cost of electricity (COE).

10. Cost of Electricity Assessments

To evaluate the economics of tidal in-stream power plants, three standard economic assessment methodologies have been used:

- a. Utility Generator (UG),
- b. Municipal Generator (MG)
- c. Non-Utility Generator (NUG) or Independent Power Producer (IPP).

Taxable regulated utilities (independently owned utilities) are permitted to set electricity rates (i.e., collect revenue) that will cover operating costs and provide an opportunity to earn a reasonable rate of return on the property devoted to the business. This return must enable the UG to maintain its financial credit as well as to attract whatever capital may be required in the future for replacement, expansion and technological innovation and must be comparable to that earned by other businesses with corresponding risk.

Non taxable municipal utilities also set electricity rates that will cover operating costs, however, utility projects are financed by issuing tax-exempt bonds, enabling local governments to access some of the lowest interest rates available

Because the risks associated with private ownership are generally considered to be greater than utility ownership, the return on equity must be potentially higher in order to justify the investment. However, it is important to understand that there is no single right method to model an independently owned and operated NUG or IPP renewable power plant. Considerations such as an organization's access to capital, project risks, and power purchase and contract terms determine project risks and therefore the cost of money.

This regulated UG and MG methodologies are based on a levelized cost approach using real (or constant) U.S. dollars with 2005 as the reference year and a 20-year book life. The purpose of this standard methodology is to provide a consistent, verifiable and replicable basis for computing the cost of electricity (COE) of a tidal energy generation project (i.e., a project to engineer, permit, procure, construct, operate and maintain a tidal energy power plant).

The NUG methodology is based on a cash flow analysis and projections of market electricity prices. This allows a NUG to estimate how quickly an initial investment is recovered and how returns change over time.

The results of this economic evaluation will help government policy makers determine the public benefit of investing public funds into building the experience base of tidal energy to transform the market to the point where private investment will take over and sustain the market. Such technology support is typically done through funding R&D and through incentives for the deployment of targeted renewable technologies.

If the economics of the notional commercial scale tidal in-stream power plant is favorable with respect to alternative renewable generation options, a case can be made for pursuing the development of tidal flow energy conversion technology. If, however, even with the most optimistic assumptions, the economics of a commercial size tidal flow power plant is not favorable and cannot economically compete with the alternatives, a case can be made for not pursuing tidal flow energy conversion technology development.

The methodology is described in detail in Reference [2].

The yearly electrical energy produced and delivered to bus bar is estimated to be 63,504 MWh/year for an array consisting of 66 dual-rotor MCT turbines. These turbines have a combined installed capacity of 20.4MW, and on average extract 8.5 MW of kinetic power from the tidal stream, which is roughly 15% of the total kinetic energy at the site. The elements of cost and economics (in 2005\$) for MCT's SeaGen are:

- Utility Generator (UG) Total Plant Investment = \$67.6 million
- Annual O&M Cost = \$2.3 million
- UG Levelized Cost of Electricity (COE) = 10.0 (Real) 11.7 (Nominal) cents/kWh with renewable financial incentives equal to that the government provides for renewable wind energy technology
- Municipal Generator (MG) Levelized Cost of Electricity (COE) = 9.2 (Real) 11.2
 (Nominal) cents/kWh with renewable financial incentives equal to that the government provides for renewable wind energy technology
- Nun Utility Generator (Independent Power Producer) will not produce an Internal Rate of Return.

There is an higher uncertainty with these estimates than for the US states because of the lack of tidal current measurement data in the region. Better data may yield improved results. The detailed worksheets including financial assumptions used to calculate COE and IRR are contained in the Appendix.

TISEC technology is very similar to wind technology and has benefited from the learning curve of wind technology, both on shore and off shore. Therefore, the entry point for a TISEC plant is much less than that of wind technology back in the late 1970s and early 1980s (i.e., over 20 cents/kWh). Additional cost reductions will certainly be realized through value engineering and economies of scale.

Except for the Minas Passage in Nova Scotia which clearly has the size to be considered central power, all other sites studied in the U.S. and Canada fall in between the definition of distributed generation (DG) and central power generation.

We use the term distributed generation (DG) or distributed resources (DR) to describe an electric generation plant located in close proximity to the load that it is supplying and is either connected to the electric grid at distribution level voltages or connected directly to the load. Examples of DG/DR (DR when some form of storage is included) are rooftop

photovoltaic systems, natural gas micro turbines and small wind turbines. Large wind projects and traditional fossil and nuclear plants are examples of central generation where the electricity delivers power into the grid at transmission voltage levels.

DG types of systems traditionally find applications in niche markets because of unique market drivers such as:

- Delay or defer an upgrade to T&D infrastructure that would otherwise have been necessary to bring power generated away from a load center to that load center
- Voltage stability support
- Displace diesel fuel in off grid applications
- Satisfy local citizens desires to have control of their own power source

A realistic comparison to equitably evaluate the cost of deferring T&D expenses with the cost of installing DG/DR is complex and requires considering depreciation and tax benefits, property tax and insurance for both options, maintenance and fuel costs of operating the DG/DR and employing discounted cash flow methods. This comparison must be made on a case-by-case basis.

EPRI, in collaboration with DOER, NJBPU and CEC, and funded by NASEO, is studying political and financial mechanisms for win-win DG/DR solutions for both the distribution utility and the end user.

Economic assessments of a commercial scale tidal power plant and other renewable and non renewable energy systems were made.

The current comparative costs of several different central power generation technologies are given in Table 10 - COE for Alternative Energy Technologies: 2010 for 2010. Capital costs are given in \$/kW. They have wide ranges that depend on the size of the plant and other conditions such as environmental controls for coal and quality of the resource for

geothermal. We are using generally accepted average numbers and ranges from EPRI sources.

Table 10 - COE for Alternative Energy Technologies: 2010

Table 11 - COE for Alternative Energy Technologies: 2010 for a Utility Generator

	Capacity Factor (%)	Capital Cost ¹ (\$/kW)	COE (cents/kWh)	CO2 (lbs per MWh)
Tidal In Stream	35	2,000	9 – 11.7	None
Wind (Class 3-6)	30-42	1,150	4.7-6.5	None
Solar Thermal Trough	33	3,300	18	None
Coal PC USC (2)	80	1,275	4.2	1760
NGCC ³ @ \$7/MM BTU)	80	480	6.4	860
IGCC ² with CO2 capture	80	1,850	6.1	344 ⁴

Notes:

- 1. Costs in 2005 U.S. \$;
- 2. 600 MW capacity; Pittsburgh#8 coal
- 3. Based on GE 7F machine or equivalent by other vendors
- 4. Based on 85% removal

The fuel cost for coal and natural gas (NG) is the price of fuel (in \$ per Mbtu), times the heat rate (BTUs needed to generate a kWh of electricity – 10,000 for PC Coal, 9,000 for IGCC, 12,000 for Gas CT and 7,000 for NG CC), divided by 10,000.

Table 13 - Assumptions forming the Basis for COE for Alternative Energy Technologies

	Book Life/ Tax life)	Fed Tax Rate	State Tax Rate	Dep Sch	% Equity UG/ NUG/ Public	Rate	% Debt UG/ NUG/ Public	Debt Disc't Rate (Real) UG/NUG/ Public	Inflation Rate
Tidal In	20/20	22	16	MAC	65/	13/	35/	7.5/	3
Stream				RS	30	17/	70/	8/	
					0	5	100	5	
Wind	30/	35	6.5	MAC	45/	11.5/	55/	6/5	2
	20			RS	30/	13/	70/	8/	
					0	N/A	100	4.5	
Coal ⁽²⁾ PC	30/	35	6.5	ACR	45/	11.5/	55/	6/5	2
First of a	20			S	30/	13/	70/	8/	
Kind USC					0	N/A	100	4.5	
IGCC ⁽²⁾ GE	30/	35	6.5	ACR	45/	11.5/	55/	6/5	2
Quench W/O	20			S	30/	13/	70/	8/	
CO2 capture					00	N/A	100	4.5	
NGCC ⁽³⁾	30/	35	6.5	ACR	45/	11.5/	55/	6/5	2
Advanced (@	20			S	30/	13/	70/	8/	
\$7/MM Btu)					00	N/A	100	4.5	
NGCC ⁽³⁾	30/	35	6.5	ACR	45/	11.5/	55/	6/5	2
Advanced @	20			S	30/	13/	70/	8/	
\$5/MM Btu)					0	N/A	100	4.5	

11. Sensitivity Studies

The results reported thus far are for a single design case. Certain key parameters can have a significant impact on the cost of energy from a TISEC array. Among these are:

- Array size economies of scale with larger arrays
- Plant system Availability deployment of maturing technology
- Current velocities at site
- Financial assumptions financing rates, renewable energy production credits

Cost of energy numbers presented are real costs for a UG generator with assumptions discussed in Chapter 9. All costs are in 2005 USD.

Array Size

This sensitivity has already been implicitly shown in the unit capital cost differences for pilot turbine versus commercial scale array. Figure 40 shows the sensitivity of cost of energy (COE) to the number of turbines installed.

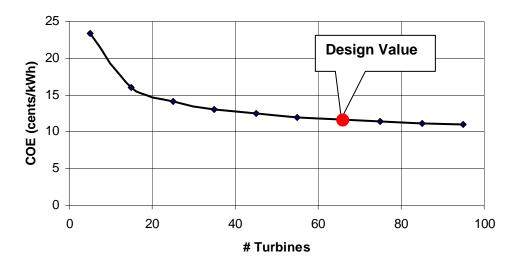


Figure 40 – Sensitivity of COE to number of turbines installed

Due to economies of scale (mobilization costs, increased manufacturing efficiency), the capital and operating costs for the array decrease with the number of installed turbines. The sensitivity of the different elements of capital cost to the number of turbines installed is given in Figure 41.

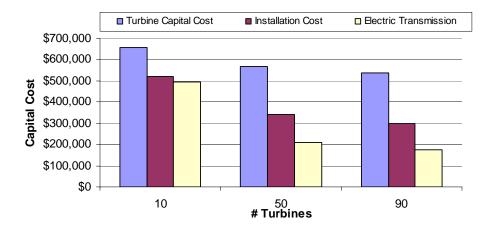


Figure 41 – Sensitivity of capital cost elements to number of installed turbines

Economies of scale due to decreasing capital cost occur in equipment, installation, and electrical interconnection. Installation and electrical transmission costs are near identical. Cost of energy decreases are not driven exclusively by scale in one particular area. Note that equipment costs dominate in all cases. Annual O&M costs also decrease due to economies of scale (e.g. maintenance mobilization costs spread out over more turbines). The sensitivity of annual O&M costs to number of installed turbines is given in Figure 42.

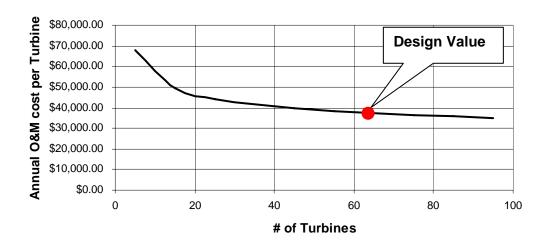


Figure 42 – Sensitivity of annual O&M cost to number of installed turbines

Power Plant System Availability

Given that tidal in-stream energy is an emerging industry and limited testing has been done to validate component reliability, the impact of the plant system availability on cost of energy is key. If the availability is lower than anticipated, array output will be lower, but costs will be the same. This is shown in Figure 43, where all parameters aside from availability are held constant for the commercial array design.

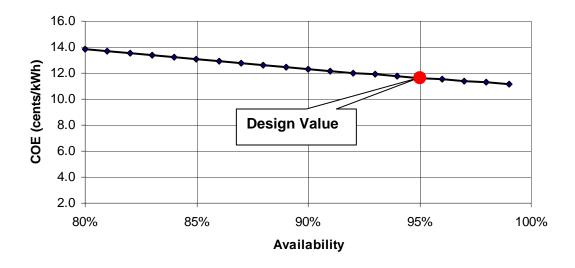


Figure 43 – Sensitivity of COE to array availability

If system availability is as low at 80%, the cost of energy with increase by a bit more than 1.5 cents/kWh (20% increase) compared to the assumed availability of 95%. This is a substantial increase and highlights the need of developers to verify expected component lifetimes and service schedules.

Current Velocity

One of the greatest unknowns in the array design is current velocity over the region of array deployment. The sensitivity of cost of energy to average current and power flux is shown in Figure 44 and Figure 45, where most other parameters are held constant for the commercial array design. Current velocity is modified by multiplying each velocity 'bin' by a constant value (e.g. 0.7). As a result, the shape of the velocity histogram is unchanged, only the mean value. As the velocity changes, the rated speed of the turbine is allowed to vary to

maintain the lowest possible cost of energy. Note that average current velocity and power flux are not independent variables, the design point average current velocity corresponds to the design point average power flux.

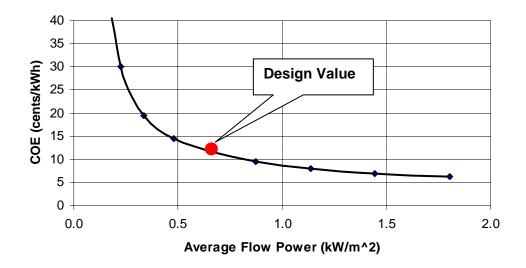


Figure 44 – Sensitivity of COE to average flow power in kW/m²

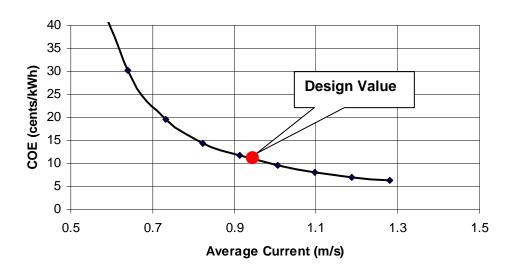


Figure 45 – Sensitivity of COE to average current speed (m/s)

Clearly, the average velocity at the site has a significant effect on cost of energy, particularly if average current speeds are lower than expected. Note that these results are dependent on the shape of the velocity distribution histogram and therefore, we can not broadly draw conclusions about the cost of energy at other sites from this analysis (though

one would expect the general direction of the results to be comparable for all East coast sites).

Design Velocity

As discussed in Chapter 3, the design velocity for the turbine has been chosen to approximate "runaway" conditions – a pitch control failure in the maximum current existing at the site. However, since the most significant design load is the thrust on the rotors – which is maximized near rated conditions – this represents a potential system over design. If manufacturers are able to achieve sufficient operating experiences with their turbines to ensure that turbines will never operate in a "runaway" mode, then the design velocity could be set much closer to the rated velocity. Similar functionality is used in large wind-turbines to reduce loading conditions. Figure 46 shows the effect on the real cost of energy by lowering the design speed.

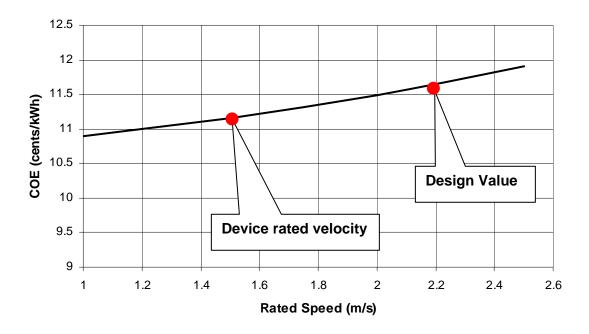


Figure 46 – Sensitivity of COE to design speed

Financial Assumptions

The effect of varying the cost of capital to finance the project is shown in the following figure. The fixed charge rate represents a single indicator of the cost of capital and is used here (see Reference 2 for a detailed explanation). It includes effects of interest rates, return of capital, taxation and production tax credits.

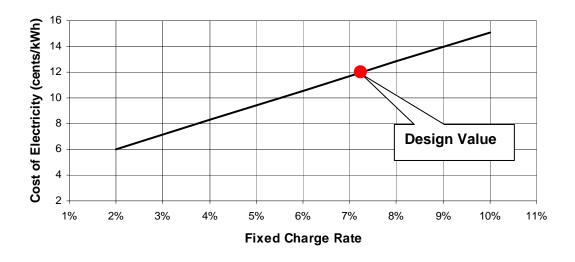


Figure 47 – Sensitivity of COE to Fixed Charge Rate

If a project is deemed ineligible for renewable production credits, or funds for such credits are not fully budgeted, COE increases substantially. Figure 48 shows the sensitivity of COE to production credits, with credits varied from 0% (no credits) to more credits than are currently assumed in the financial analysis, 100% being the design value used in our financing assumptions.

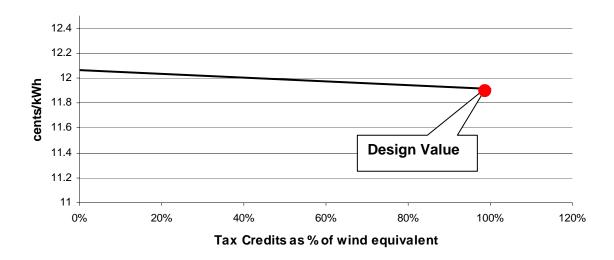


Figure 48 – Sensitivity of COE to production credits

12. Conclusions

Pilot In-Stream Tidal Power Plant

For the single turbine pilot installation, the Head Harbour Passage site offers good potential sites. The predicted resource is moderate (a benefit for a first demonstration in the province), interconnection is easily managed, the site is served by a major port facility in close proximity and an existing cable easement could potentially make the consenting and initial cost be lower than it would otherwise. Most of the sites however are located below the shipping channel and therefore require fully submersible technology. manufacturers Lunar Energy and Marine Current Turbines have technology that could be deployed fully submersed. A pilot system is an important intermediary step before proceeding to a commercial installation and should use similar technology and units that are of similar scale as the full-scale devices. The purpose of the pilot is to demonstrate the potential for a commercial array, verify low environmental impact, and generally build towards regulatory acceptance of an array of similar devices. It is important to understand that many design requirements are unique to the site and the manufacturers will need to take local site conditions into consideration when adapting their technology to meet these requirements. The technology gap to be covered by both Lunar Energy and MCT in order to get to the point where a full-scale, fully-submersed TISEC pilot could be deployed is relatively small and it is reasonable to expect that such a deployment could occur within 2years given a firm local commitment to move forward with this project.

Commercial In-Stream Tidal Power Plant

The Head Harbour Passage is a moderate candidate site for the installation of a commercial tidal in-stream power plant. This conceptual study indicated that the installation of turbines at the site is limited by the 15% extraction limit set to minimize environmental impacts and grid interconnection feed-in limits. Grid interconnection could be accomplished on Campobello Island into the existing 69kV transmission line. There are some planned wind energy deployments on Campobello Island which could potentially compete for electrical capacity on that transmission line. Alternatives would exist to feed in power on Deer

Iisland. This would add only moderate cost to a commercial project and would impact the cost of electricity only minimally.

As a new and emerging technology, in-stream tidal power has essentially no production experience and therefore its costs, uncertainties and risks are relatively high compared to existing commercially available technologies such as wind power with a cumulative production experience of about 40,000 MW installed. Given the technological uncertainty, it would make most sense that the technology companies carry technological and implementation risks and ideally are the owners of the generation assets. Local government can stimulate the implementation by addressing environmental and consenting issues, providing the manufacturers with a framework within which they can operate and if required provide financial incentives such as per kWh subsidies. Technological uncertainties also represent risks in that it is unclear at present which technology is best suited for the site and most manufacturers involved in TISEC are small companies that may or may not be around a few years from now. As such it is important that the resource is being developed as a strategic asset without locking into a single technology path or committing to a single company.

Techno-economic Challenges

The cost for the first tidal plant leverages the learning gained from wind energy. Therefore, the cost of future plants will not follow a learning curve based on the first plant. Rather than seeing a sharp reduction in unit cost for the next 10 MW or so plant, a substantial decrease might require another 40,000 MW of installed capacity (double the end of 2004 wind cumulative production volume). Device manufacturers are pursuing novel approaches to array-scale installations. The economic analysis presented in this report is based on first-generation device economics. The assumption contingent in this analysis is that while next-generation devices will enable turbine deployment at a wider range of sites (e.g. deep water) and with greater versatility (e.g. integrated lift without surface piercing pile) the cost of installing and operating next-generation turbines will be similar to first-generation devices. O&M costs are particularly uncertain since no tidal current turbine has been in service for

extended periods of time. Assumptions regarding intervention frequencies, refit costs, and component lifetimes will not be completely borne out for at least a decade.

Sensitivities show that the cost of energy is highly dependent on the currents (and power flux) at the deployment site. Furthermore, sensitivity analysis indicates the manufacturers are best served by designing turbines which experience their design loads close to rated device speed.

Sensitivities also show that the cost of energy is sensitive to the number of turbines installed, since for larger arrays fixed mobilization costs are spread over a greater number of turbines. Therefore, a phased installation of the array (e.g. 10 turbines/year for 6 years) would substantially increase the cost of energy for the entire project. A regulatory approach that requires a long-term phased installation plan to study the impact of turbine deployment should be discouraged if the project will not be compensated for the increased cost.

General Conclusions

In-stream tidal current energy as a distributed renewable resource shows promise for New Brunswick and represents a way to make sustainable use of a local renewable resource without the visual distractions that delay so many other energy projects. The installation of a TISEC array in the Head Harbour passage site would provide valuable benefits to the local economy and further reduce its dependence on environmentally problematic fossil energy resources.

In-stream tidal energy electricity generation is a new and emerging technology. Many important questions about the application of in stream tidal energy to electricity generation remain to be answered, such as:

• There is not a single in-stream power technology. There is a wide range of in stream tidal power technologies and power conversion machines which are currently under development. It is unclear at present what type of technology will yield optimal economics. Not all devices are equally suitable for deployment in all depths and currents.

- It is also unclear at present at which size these technologies will yield optimal economics. Tidal power devices are typically optimized to prevailing conditions at the deployment site. Wind turbines for example have grown in size from less then 100kW per unit to over 3MW in order to drive down cost.
- Will the predictability of in stream energy earn capacity payments for its ability to be dispatched for electricity generation?
- How soon will developers be ready to offer large-scale, fully submerged, deep water devices?
- Will the installed cost of in-stream tidal energy conversion devices realize their potential of being much less expensive than solar or wind (because a tidal machine is converting a much more concentrated form of energy than a solar or wind machine)?
- Will the O&M cost of in-stream tidal energy conversion devices be as high as
 predicted in this study and remain much higher than the O&M cost of solar or wind
 (because of the more remote and harsher environment in which it operates and must
 be maintained)?
- Will the performance, reliability and cost projections be realized in practice once in stream tidal energy devices are deployed and tested?

And in particular for the Head Harbour Passage:

- Detailed velocity measurements and 3 dimensional flow simulations will be necessary prior to the deployment of even a pilot plant. Will the actual power flux experienced at the site meet the predictions made in this study? Sensitivity analysis clearly shows that the power flux has a substantial impact on the cost of electricity.
- Are assumptions related to turbine spacing (both laterally and downstream)
 reasonable? Could the array be packed even closer together (further reducing its
 footprint) without degrading individual turbine performance?
- Is extracting 15% of the kinetic energy resource a reasonable target? Could more of the resource be extracted without degrading the marine environment? If so, the cost of energy for the project could be further reduced by increasing the size of the array.

In-stream tidal energy is a potentially important energy source and should be evaluated for adding to New Brunswick's energy supply portfolio. A balanced and diversified portfolio of energy supply options is the foundation of a reliable and robust electric grid. TISEC offers an opportunity for New Brunswick to expand its supply portfolio with a resource that is:

- Local providing long-term energy security and keeping development dollars in the region
- Sustainable and green-house gas emission free

Recommendations

EPRI makes the following recommendations to the New Brunswick Electricity stakeholders:

General

Continue to build collaboration with other provinces and the Federal Government with common goals. In order to accelerate the growth and development of an ocean energy industry in the Canada and to address and answer the many techno-economic challenges, a technology roadmap is needed which can most effectively be accomplished through leadership at the national level. The development of ocean energy technology and the deployment of this clean renewable energy technology would be greatly accelerated if the Canadian Federal Government was financially committed to supporting the development.

Join a working group to be established by EPRI for existing and potential owners, buyers and developers of tidal in stream energy including the development of a permanent in stream tidal energy testing facility in the Canada. For this group EPRI will track and regularly report on:

- Potential funding sources
- In-stream tidal energy test and evaluation projects overseas (primarily in the UK) ,the U.S (Verdant RITE project, etc) and Canada (Race Rocks, Canoe Pass, etc)
- Status and efforts of the permitting process for new in stream tidal projects

• Newly announced in-stream tidal energy devices

Encourage R&D at universities - potentially in partnership with pilot plant device developer.

Encourage Provincial and Federal government support of RD&D

- Implement a national ocean tidal energy program
- Promote development of industry standards
- Continue membership in the IEA Ocean Energy Program
- Clarify and streamline federal permitting processes
- Study provisions for tax incentives and subsidies
- Ensure that the public receives a fair return from the use of ocean tidal energy resources
- Ensure that development rights in provincial waters are allocated through a fair and transparent process that takes into account provincial, local, and public concerns

Pilot Demonstration

In order to proceed with a pilot plant in the Head Harbour Passage, remaining technology, consenting and environmental issues will need to be resolved. This includes:

- Detailed velocity profiling survey and 3-dimensional flow simulations.
 Computational fluid dynamic (CFD) modeling of tidal flows could help focus this work on the most promising areas, as well as identifying turbulent eddies which could degrade turbine performance.
- High resolution bottom bathymetry survey
- Geotechnical seabed survey
- Detailed design using above data
- Environmental impact assessments
- Public outreach
- Implementation planning for Phase III Construction

• Financing/incentive requirements study four Phase III and IV (Operation)

13. References

- 1 EPRI TP-001-NA Guidelines for Preliminary Estimation of Power Production
- 2 EPRI TP-002-NA Economic Assessment Methodology
- 3. EPRI TP -003-NB New Brunswick Site Survey and Characterization
- 3 EPRI TP-004-NA Survey and Characterization of TISEC Devices
- 4 EPRI TP-005-NA Methodology for Conceptual Level Design of TISEC Plant
- 5 Google Maps. http://maps.google.com/
- 6 NOAA Tidal Current Predictions 2005. http://www.tidesandcurrents.noaa.gov/
- 7 NOAA Tidal Range Predictions 2005. http://www.tidesandcurrents.noaa.gov/
- 8 Bywaters G, John V, Lynch J, Mattila P, Norton G, Stowell J, Salata M, Labath O, Chertok A, Hablanian D. Northern Power Systems WindPACT Drive Train Alternative Design Study Report. 2005. Available through: http://www.osti.gov/
- 9 Gerwick, B. Construction of Marine and Offshore Structures. CRC Press, Boca Raton, FL. 2000.
- 10 Dawson, T. Simplified Analysis of Offshore Piles Under Cyclic Lateral Loads. *Ocean Engineering* 7;553-562. 1980.
- 11 Myers L, Bahaj A. Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race, *Renewable Energy* 30:11;1713-1731.
- 12 Poore R, Lettenmeier T, Wind Pact Advanced Drive Trains Design Study, NREL 2003
- 13 Dayton A. Griffin, Wind PACT Turbine Design Scaling Studies Technical Area 1 Composite Blades for 80- to 120-Meter Rotor
- 14 API American Petroleum Institute. Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms Working Stress Design. API-RP2A-WSD, 21st edition, December 2000
- 15 Kellezi L, Hansen P, Static and dynamic analysis of an offshore mono-pile windmill foundation, Danish Geotechnical Institute, Lyngby, Denmark
- 16 Generic Design Framework Pile foundations (fixed steel structures), Offshore Technology Report 2000/99

14. Appendix

Irrelevance of Flow Decay Concerns

A concern established by some other researchers, particularly Bahaj and Myers [11] is that the power available in a tidal stream is reduced for each subsequent transect of turbines. Their results point to a substantial reduction in flow power, and degraded array performance, for arrays with more than a few transects.

This analysis is, however, in error as it violates mass conservation for tidal channels by assuming that the cross-sectional area of the channel is constant along the entire array. If the velocity of the flow is decreasing over each transect, then the area of the channel would have to increase to maintain conservation of mass.

However, the fuller picture is considerably more counter-intuitive. The total power in a tidal stream is the summation of the kinetic energy due to its velocity and the potential energy due to its height. For representative tidal channels, if the height of the water was to increase to satisfy mass conservation, the potential energy of the stream would also increase. In fact, this increase in potential energy would actually exceed the decrease of kinetic energy due to the presence of turbines and the total power in the channel would increase after each transect. Since this rationale violates conservation of energy it is also, clearly, incorrect. In order to satisfy both conservation of mass and energy, after each transect the height of the water decreases and velocity *increases*. The net effect is a decrease in channel power, but from a kinetic energy standpoint, the presence of upstream turbines actually should improve the performance of those downstream. This effect is described in detail for an ideal channel in Bryden and Couch.

However, without detailed information about cross-channel flow both upstream and downstream of the proposed turbine array it is not possible to model the potential performance enhancement. As a result, any such transect-to-transect enhancement is

omitted from the model. However, it would appear that concerns related to flow degradation have little scientific basis.

Hub-height Velocity Approximation

In order to simplify calculations, it has been assumed that the power flux over the swept area of the turbine may be approximated by the power flux at the hub height. Assuming the velocity profile in the channel varies with a $1/10^{th}$ power law, the average power flux over the area of the turbine is given by the following integral:

$$\overline{P} = \frac{\int_{0}^{2\pi R} \int_{0}^{1} \rho u_{o}^{3} \left(\frac{r \sin \theta + z_{hub}}{z_{o}}\right)^{3/10} r dr d\theta}{\int_{0}^{2\pi R} r dr d\theta}$$

where P is the average power flux, R is the radius of the turbine, u_o is the surface current velocity, z_o is the depth of the water, and z_{hub} is the hub height.

This integral is not readily evaluated by analytical methods, but may be approached numerically. This is done by approximating the rotor as a series of rectangles with height Δz and width Δx . The power flux for the rectangles is calculated, and an area-weighted average taken to find the average power flux over the rotor. A representation of this method is shown in Figure 49.

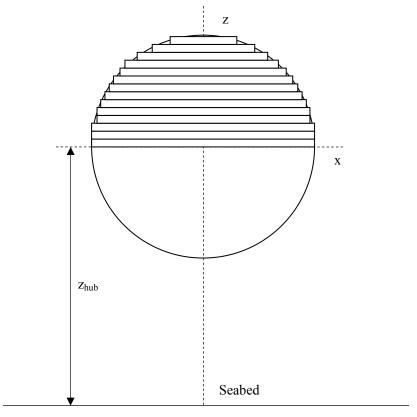


Figure 49 – Representative Numerical Integration

The result of this calculation is independent of water depth and velocity, but is dependent on hub height above the seabed. The variance from midpoint power flux (defined as $\Delta P/P_{hub}$ height) is tabulated in Table 12.

Table 12 – Approximation Variance as Function of Hub Height

Hub Height (m)	Variance
10	-2.7%
15	-1.0%
20	-0.6%
30	-0.3%

A hub height of 17m (as assumed for the purposes of this feasibility study) introduces an error of -0.8% — that is, the actual power extracted by a turbine when approximating the power flux as the midpoint power flux is approximately 1% less than would be extracted by a turbine operating in water with a $1/10^{th}$ power velocity profile. For the purposes of a feasibility study, this approximation is reasonable.

Utility Generator Cost of Electricity Worksheet

INSTRUC	OIT	IS	
		Indi	cates Input Cell (either input or use default values)
		Indi	cates a Calculated Cell (do not input any values)
Sheet 1.	TPC	/TP	PI (Total Plant Cost/Total Plant Investment)
		a)	Enter Component Unit Cost and No. of Units per System
		b)	Worksheet sums component costs to get TPC
		c)	Adds the value of the construction loan payments to get TPI
		d)	Enter Annual O&M Type including annualized overhaul and refit cost
		c)	Worksheet Calculates insurance cost and Total Annual O&M Cost
Sheet 2.	Assu	ımp	otions (Financial)
		a)	Enter project and financial assumptions or leave default values
Sheet 3.	NPV	′ (N	et Present Value)
		Α	Gross Book Value = TPI
		В	Annual Book Depreciation = Gross Book Value/Book Life
		С	Cumulative Depreciation
		D	MACRS 5 Year Depreciation Tax Schedule Assumption
		Е	Deferred Taxes = (Gross Book Value X MACRS Rate - Annual
			Book Depreciation) X Debt Financing Rate
		F	Net Book Value = Previous Year Net Book Value - Annual Book
			Depreciation - Deferred Tax for that Year
Sheet 4.	CRR	(C	apital Revenue Requirements)
		Α	Net Book Value for Column F of NPV Worksheet
		В	Common Equity = Net Book X Common Equity Financing
			Share X Common Equity Financing Rate
		С	Preferred Equity = Net Book X Preferred Equity Financing
			Share X Preferred Equity Financing Rate
		D	Debt = Net Book X Debt Financing Share X Debt Financing Rate
		Е	Annual Book Depreciation = Gross Book Value/Book Life
		F	Income Taxes = (Return on Common Equity + Return of Preferred Equity -
			Interest on Debt + Deferred Taxes) X (Comp Tax Rate/(1-Comp Tax R
		G	Property Taxes and Insurance Expense =
		Н	Calculates Investment and Production Tax Credit Revenues
		I	Capital Revenue Req'ts = Sum of Columns B through G
Sheet 5.	FCR	(Fi	xed Charge Rate)
		Α	Nominal Rates Capital Revenue Req'ts from Columnn H of Previous Worksheet
		В	Nominal Rate Present Worth Factor = 1 / (1 + After Tax Discount Rate)
		С	Nominal Rate Product of Columns A and B = A * B
		D	Real Rates Capital Revenue Reg'ts from Columnn H of Previous Worksheet
		Е	Real Rates Present Worth Factor = 1 / (1 + After Tax Discount Rate - Inflation Rate)
		F	
Sheet 6.	Calc	cula	ates COE (Cost of Electricity)
			E = ((TPI * FCR) + AO&M) / AEP
	_		other wordsThe Cost of Electricity =
			The Sum of the Levelized Plant Investment + Annual O&M Cost including Levelized
			Overhaul and Replacement Cost Divided by the Annual Electric Energy Consumption

TOTAL PLANT COST (TPC) -	2003\$			
TPC Component	Unit	Unit Cost	Total Cost (2005\$)	
Procurement				
Power Conversion System	66	\$203,272	\$13,415,952	
Structural Elements	66	\$309,960	\$20,457,360	
Subsea Cables	Lot	\$1,210,000	\$1,210,000	
Turbine Installation	66	\$320,216	\$21,134,256	
Subsea Cable Installation	Lot	\$10,844,000	\$10,844,000	
Onshore Grid Interconnection	Lot	\$500,000	\$500,000	
TOTAL			\$67,561,568	
TOTAL PLANT INVESTMENT	(TPI) - 2005 \$	Before Tax		
	Total Cash Expended	Construction Loan Cost at Debt Financing	2005 Value of Construction Loan	TOTAL PLANT
End of Year	Total Cash Expended TPC (2005\$)	Construction Loan Cost at Debt Financing Rate	Construction Loan Payments	INVESTMENT 2005\$
End of Year 2007	Total Cash Expended TPC (2005\$) \$33,780,784	Construction Loan Cost at Debt Financing Rate \$2,533,559	Construction Loan Payments \$2,065,587	INVESTMENT 2005\$ \$35,846,3
End of Year	Total Cash Expended TPC (2005\$) \$33,780,784 \$33,780,784	Construction Loan Cost at Debt Financing Rate \$2,533,559 \$2,533,559	Construction Loan Payments \$2,065,587 \$1,865,090	INVESTMENT 2005\$ \$35,846,3 \$35,645,8
End of Year 2007 2008	Total Cash Expended TPC (2005\$) \$33,780,784 \$33,780,784 \$67,561,568	Construction Loan Cost at Debt Financing Rate \$2,533,559 \$2,533,559 \$5,067,118	Construction Loan Payments \$2,065,587 \$1,865,090 \$3,930,677	INVESTMENT 2005\$ \$35,846,3 \$35,645,8
End of Year 2007 2008 Total ANNUAL OPERATING AND MA	Total Cash Expended TPC (2005\$) \$33,780,784 \$33,780,784 \$67,561,568 AINTENANCE Yrly Cost	Construction Loan Cost at Debt Financing Rate \$2,533,559 \$2,533,559 \$5,067,118 COST (AO&	Construction Loan Payments \$2,065,587 \$1,865,090 \$3,930,677	INVESTMENT 2005\$ \$35,846,3 \$35,645,8
End of Year 2007 2008 Total ANNUAL OPERATING AND MA	Total Cash Expended TPC (2005\$) \$33,780,784 \$33,780,784 \$67,561,568	Construction Loan Cost at Debt Financing Rate \$2,533,559 \$2,533,559 \$5,067,118 COST (AO&	Construction Loan Payments \$2,065,587 \$1,865,090 \$3,930,677	INVESTMENT 2005\$
End of Year 2007 2008 Total ANNUAL OPERATING AND MA	Total Cash Expended TPC (2005\$) \$33,780,784 \$33,780,784 \$67,561,568 AINTENANCE Yrly Cost	Construction Loan Cost at Debt Financing Rate \$2,533,559 \$2,533,559 \$5,067,118 COST (AO& Amount \$1,240,168	Construction Loan Payments \$2,065,587 \$1,865,090 \$3,930,677	INVESTMENT 2005\$ \$35,846,3 \$35,645,8

FIN	ANCIAL	ASSUMF	PTI	ONS		
	(defaul	t assump	tior	ns in pink background	l - without line nu	ımbers are
	calcula	ted value	es)			
1		Plant Capa			20.46	MW
2	Annual	Electric E	ner	gy Production (AEP)	63,504	MWeh/y
		re, Capaci	_		35.4	%
3		onstant Do		S	2005	Year
4	Federal	Tax Rate			22	%
5	Province	е			New Brunswick	
6	Provinci	al Tax Ra	te		16	%
	Compos	site Tax R	ate	(t)	0.3448	
	t/(1-t)				0.5263	
7	Book Li				20	Years
8	Constru	ction Fina	nci	ng Rate	7.5	
9	Commo	n Equity I	ina	ncing Share	52 13 35	%
10	Preferre	d Equity I	ina	ncing Share		%
11	Debt Fir	nancing S	har	Э		%
12	Commo	n Equity I	ina	ncing Rate	13	%
13	Preferre	d Equity I	ina	ncing Rate	10.5	%
14	Debt Fir	nancing R	ate		7.5	%
	Nomina	I Discount	Ra	te Before-Tax	10.75	%
	Nomina	I Discount	Ra	ite After-Tax	9.84	%
15	Inflation	Rate $= 3^{\circ}$	%		3	%
	Real Dis	scount Ra	te E	Before-Tax	7.52	%
	Real Dis	scount Ra	te /	After-Tax	6.65	%
16	Federal	Investme	nt T	ax Credit (1)	0	
17	Federal	Production	n T	ax Credit (2)	0.0088	
18	Provinci	al Investm	nent	Tax Credit < \$1.76M	35	% of TPI
19	Provinci	al Investm	nent	Tax Credit > \$1.762M	20	
20	Provinci	al Investm	nent	Tax Credit Limit	None	
21	Renewa	ble Energ	у С	ertificate (3)	0	\$/kWh
Not	es					
	1	-		only - cannot take Fed I		
	2			st 10 years with escalat	•	
	3	\$/kWh fo	r ei	ntire plant life with esca	lation (assumed 3%	% per yr)

	SENT VALU					
TPI =	\$71,492,245					
Year	Gross Book	Book De	oreciation	Renewable Resource Tax	Deferred	Net Boo
End	Value	Annual	Accumulated	Depreciation Schedule	Taxes	Value
	Α	В	С	D	E	F
2008	71,492,245					71,492,24
2009	71,492,245	3,574,612	3,574,612	0.3000	6,162,632	61,755,00
2010	71,492,245	3,574,612	7,149,225	0.2100	3,944,084	54,236,30
2011	71,492,245	3,574,612	10,723,837	0.1470	2,391,101	48,270,59
2012	71,492,245	3,574,612	14,298,449	0.0940	1,084,623	43,611,3
2013	71,492,245	3,574,612	17,873,061	0.0660	394,408	39,642,33
2014	71,492,245	3,574,612	21,447,674	0.0470	-73,952	36,141,67
2015	71,492,245	3,574,612	25,022,286	0.0200	-739,516	33,306,57
2016	71,492,245	3,574,612	28,596,898	0.0100	-986,021	30,717,98
2017	71,492,245	3,574,612	32,171,510	0.0000	-1,232,526	28,375,90
2018	71,492,245	3,574,612	35,746,123	0.0000	-1,232,526	26,033,8
2019	71,492,245	3,574,612	39,320,735	0.0000	-1,232,526	23,691,72
2020	71,492,245	3,574,612	42,895,347	0.0000	-1,232,526	21,349,64
2021	71,492,245	3,574,612	46,469,959	0.0000	-1,232,526	19,007,5
2022	71,492,245	3,574,612	50,044,572	0.0000	-1,232,526	16,665,47
2023	71,492,245	3,574,612	53,619,184	0.0000	-1,232,526	14,323,38
2024	71,492,245	3,574,612	57,193,796	0.0000	-1,232,526	11,981,30
2025	71,492,245	3,574,612	60,768,408	0.0000	-1,232,526	9,639,21
2036	71,492,245	3,574,612	64,343,021	0.0000	-1,232,526	7,297,12
2027	71,492,245	3,574,612	67,917,633	0.0000	-1,232,526	4,955,04
2028	71,492,245	3,574,612	71,492,245	0.0000	-1,232,526	2,612,95

CADI	TAL DEVEN	IIIE DEO	IIIDEME	ATC 200E	.			
CAPI	TAL REVEN	NUE REQ	UIREWE	N I S 2003	Þ			
TDI.	\$71,492,245							
IFI	\$71,492,245							
						Income		
End		Returns	Returns			Tax on	Prov ITC &	Capital
of		to Equity		Interest	Book	Equity	Fed PTC	Revenue
Year	Net Book	Common	Pref	on Debt	Dep	Return	and REC	Req'ts
					_			-
	Α	В	С	D	E	F	Н	I
2009	61,755,001	4,174,638	842,956	1,621,069	3,574,612	5,030,521	15,121,284	122,511
2010	54,236,305	3,666,374	740,326	1,423,703	3,574,612	3,645,387	558,835	12,491,567
2011	48,270,592	3,263,092	658,894	1,267,103	3,574,612	2,655,457	558,835	10,860,322
2012	43,611,356	2,948,128	595,295	1,144,798	3,574,612	1,833,064	558,835	9,537,062
2013	39,642,336	2,679,822	541,118	1,040,611	3,574,612	1,354,959	558,835	8,632,287
2014	36,141,675	2,443,177	493,334	948,719	3,574,612	1,007,162	558,835	7,908,169
2015	33,306,578	2,251,525	454,635	874,298	3,574,612	574,849	558,835	7,171,083
2016	30,717,987	2,076,536	419,301	806,347	3,574,612	370,201	558,835	6,688,162
2017	28,375,901	1,918,211	387,331	744,867	3,574,612	172,689	558,835	6,238,875
2018	26,033,815	1,759,886	355,362	683,388	3,574,612	104,900	558,835	5,919,312
2019	23,691,729	1,601,561	323,392	621,908	3,574,612	37,111	0	6,158,584
2020	21,349,643	1,443,236	291,423	560,428	3,574,612	-30,678	0	5,839,021
2021	19,007,557	1,284,911	259,453	498,948	3,574,612	-98,467	0	5,519,457
2022	16,665,471	1,126,586	227,484	437,469	3,574,612	-166,256	0	5,199,894
2023	14,323,386	968,261	195,514	375,989	3,574,612	-234,045	0	4,880,331
2024	11,981,300	809,936	163,545	314,509	3,574,612	-301,834	0	4,560,768
2025	9,639,214	651,611	131,575	253,029	3,574,612	-369,623	0	4,241,205
2026	7,297,128	493,286	99,606	191,550	3,574,612	-437,412	0	3,921,641
2027	4,955,042	334,961	67,636	130,070	3,574,612	-505,201	0	3,602,078
2028	2,612,956	176,636	35,667	68,590	3,574,612	-572,990	0	3,282,515
Sum c	of Annual Capit	al Revenue	Requiremer	nts				122,774,845

TPI =	\$71,492,245					
End of Year	Capital Revenue Req'ts Nominal A	Present Worth Factor Nominal B	Product of Columns A and B	Capital Revenue Req'ts Real D	Present Worth Factor Real E	Product o Columns I and E
	^	J	ŭ	J	-	•
2009	122,511	0.6869	84,151	108,850	0.7731	84,151
2010	12,491,567	0.6253	7,811,194	10,775,335	0.7249	7,811,194
2011	10,860,322	0.5693	6,182,489	9,095,349	0.6797	6,182,489
2012	9,537,062	0.5183	4,942,599	7,754,504	0.6374	4,942,599
2013	8,632,287	0.4718	4,072,740	6,814,407	0.5977	4,072,740
2014	7,908,169	0.4295	3,396,697	6,060,953	0.5604	3,396,697
2015	7,171,083	0.3910	2,804,050	5,335,959	0.5255	2,804,050
2016	6,688,162	0.3560	2,380,827	4,831,670	0.4928	2,380,827
2017	6,238,875	0.3241	2,021,843	4,375,821	0.4620	2,021,843
2018	5,919,312	0.2950	1,746,355	4,030,763	0.4333	1,746,355
2019	6,158,584	0.2686	1,654,102	4,071,549	0.4063	1,654,102
2020	5,839,021	0.2445	1,427,715	3,747,845	0.3809	1,427,715
2021	5,519,457 5,199,894	0.2226	1,228,621	3,439,543	0.3572	1,228,621
2022		0.2026	1,053,747		0.3349	1,053,747
2023	4,880,331	0.1845	900,349	2,866,680	0.3141	900,349
2024	4,560,768	0.1680	765,984	2,600,942	0.2945	765,984
2025	4,241,205	0.1529	648,472	2,348,252	0.2762	648,472
2026	3,921,641	0.1392	545,871	2,108,076	0.2589	545,871
2027	3,602,078	0.1267	456,452	1,879,898	0.2428	456,452
2028	3,282,515	0.1154	378,677	1,663,223	0.2277	378,677
	122,774,845		44,502,936	87,055,643		44,502,93
	·		`	Nominal \$		Real \$
		t the beginning he products of t				
		es the annual r		44,502,936		44,502,9
2. Escalati		es uie aiiiiudi i	equilents	3%		3%
	x Discount Rat	- i		9.84%	-	6.65%
J. Aiter Ta	recovery facto	r value – i/1±i\	"/(1+i)"-1 where	3.0470		0.05%
	n and discou		(TTI) - I WIIGIG	0.1162186		0.0918082
			year) = Present			0.001000
		Recovery Factor	• •	5,172,069		4,085,
6. Booked		Coording Factor	(+ (110111 -1)	71,492,245		71,492,2
		fixed charge ra	te (levelized	71,702,270		11,732,2
	arges divided	sa silal go la	(1		

		TY CALCULATION - UTILITY GENER		
COE =	 ((TPI * FCR) + AO&M) / AEP			
	r words			
	st of Electricity =			
1110 00	· · · · · · · · · · · · · · · · · · ·	ant Investment + Annual O&M Cost includin	a Lovelized Overbou	I and Pontacoment
	Divided by the Annual Elect		g Levelized Overnat	
	Divided by the Annual Electi	ic Energy Consumption		
OMINAL	RATES			
		Value	Units	From
TPI		\$71,492,245	\$	From TPI
FCR		7.23%	%	From FCR
AO&M		\$2,253,592	\$	From AO&M
AEP =		63,504	MWeh/yr	From Assumption
COE -	TPI X FCR	8.14	cents/kWh	
COE -	AO&M	3.55	cents/kWh	
COE		\$0.1169	\$/kWh	Calculated
COE		11.69	cents/kWh	Calculated
EAL RA	ΓES			
TPI		\$71,492,245	\$	From TPI
FCR		5.71%	%	From FCR
AO&M		\$2,253,592	\$	From AO&M
AEP =		63,504	MWeh/yr	From Assumption
COE -	TPI X FCR	6.43	cents/kWh	
COE -	AO&M	3.55	cents/kWh	
COE		\$0.0998	\$/kWh	Calculated
COE		9.98	cents/kWh	Calculated

Non Utility Generator Internal Rate of Return Worksheet

INSTRUC	· I IC	CNI								
Fill in fire	st fo	ur work	sheets (or use	e d	lefault value	s) - the last two v	vorksheets are automatically			
calculate	d.	Refer to	EPRI Econor	nic	Methodolog	gy Report 002				
		Indicate	Indicates Input Cell (either input or use default values)							
		Indicato	se a Calculated		all (do not inn	ut any values)				
Chast 4	T-4	Indicates a Calculated Cell (do not input any values) Total Plant Cost/Total Plant Investment (TPC/TPI) - 2005\$								
Sneet 1.	100					f Units per System				
			eet sums com				<u> </u>			
							ents to get TPI			
Shoot 2	Worksheet adds the value of the construction loan payments to get TPI AO&M (Annual Operation and Maintenance Cost) - 2005\$									
Officet 2.			abor Hrs and C				Ψ 			
		Enter Parts and Supplies Cost by O&M Type)								
			eet Calculates		-					
Sheet 3.			rhaul and Rep							
			ear of Cost and			•				
						ear of the cost of	the O&R			
Sheet 4.			ns (Project, Fi							
							efault values			
Sheet 5.	1 Enter project, financial and other assumptions or leave default values Income Statement - Assuming no capacity factor income - Current \$									
	1									
			from 2005 to 2	200	8 (an 2.82% o	decline) X Inflation	from 2005 to 2008			
		2009-20	11 Energy pay	gy payments = AEP X Previous Year Elec Price X Annual Price						
			de-escalation							
		2012-20	25 Energy pay	/me	ents = AEP X	Previous Year Ele	ec Price X 0.72% Price			
			escalation X Ir	ıfla	tion					
	2	Calcula	tes State Inve	stn	nent and Proc	lution tax credit				
	3	Calcula	tes Federal In	ves	tment and Pr	oduction Tax Cred	lit			
	4		led O&M from							
	5		led O&R from							
	8					ues less total ope	rating costs			
	9		oreciation = As							
							est rate and life of loan			
			e earnings = Ta							
			ax = Taxable E							
						e Tax) X Federal t	ax rate			
01 10			ax Obligation =			ederal lax				
Sheet 6.		_	Statement - 0	Jur	rent \$					
	1	EBITDA		H						
	3	Taxes F	low From Oper	atio	one - EDITO	- Tayes Baid				
	4		· · · · · · · · · · · · · · · · · · ·			d on the debt loan				
	5		sh Flow after Ta		+ interest par					
	J				ne minue 1 -	Equity amount				
					•	e Equity amount ow from ops - debt	senice			
							n ops - debt service			
	6				•		th flow + current year net cash fl			
	7						hat sets the present worth			
	'						he equity investment at the			
			commercial or			Joon ino equal to t	The oquity invostment at the			

TPC Component	Unit	Unit Cost	Total Cost (2005\$)	Notes a Assumpti
Procurement				
Power Conversion System	66	\$203,272	\$13,415,952	
Structural Elements	66	\$309,960	\$20,457,360	
Subsea Cables	Lot	\$1,210,000	\$1,210,000	
Turbine Installation	66	\$320,216	\$21,134,256	
Subsea Cable Installation	Lot	\$10,844,000	\$10,844,000	
Onshore Grid Interconnection	Lot	\$500,000	\$500,000	
TOTAL			\$67,561,568	
End of Yea	Total Cash Expended IT TPC (\$2005)	Construction Loan Cost at Debt Financing Rate	2005 Value of Construction Loan Payments	INVESTM (TPC + L Value
200	Expended TPC (\$2005)	Loan Cost at Debt Financing Rate \$3,040,271	Construction Loan Payments \$2,480,944	INVESTM (TPC + L Value (\$200 \$36,2
200 200	Expended TPC (\$2005) 6 \$33,780,784 7 \$33,780,784	Loan Cost at Debt Financing Rate \$3,040,271 \$3,040,271	Construction Loan Payments \$2,480,944 \$2,241,142	INVESTM (TPC + L Value (\$200 \$36,20 \$36,00
200	Expended TPC (\$2005) 6 \$33,780,784 7 \$33,780,784	Loan Cost at Debt Financing Rate \$3,040,271 \$3,040,271	Construction Loan Payments \$2,480,944	INVESTM (TPC + L Value (\$200: \$36,20 \$36,00
200 200	Expended TPC (\$2005) 6 \$33,780,784 7 \$33,780,784 al \$67,561,568	Loan Cost at Debt Financing Rate \$3,040,271 \$3,040,271 \$6,080,541	Construction Loan Payments \$2,480,944 \$2,241,142 \$4,722,086	INVESTM (TPC + L Value (\$200 \$36,2 \$36,0
200 200 Tota	Expended TPC (\$2005) 6 \$33,780,784 7 \$33,780,784 al \$67,561,568	Loan Cost at Debt Financing Rate \$3,040,271 \$3,040,271 \$6,080,541	Construction Loan Payments \$2,480,944 \$2,241,142 \$4,722,086	INVESTM (TPC + L Value (\$200 \$36,2 \$36,0
200 200 Tota ANNUAL OPERATING AND MAIN	Expended TPC (\$2005) 6 \$33,780,784 7 \$33,780,784 al \$67,561,568	Loan Cost at	Construction Loan Payments \$2,480,944 \$2,241,142 \$4,722,086	INVESTM (TPC + L Value (\$200 \$36,20 \$36,00
200 200 Tota ANNUAL OPERATING AND MAIN Costs	Expended TPC (\$2005) 6 \$33,780,784 7 \$33,780,784 al \$67,561,568 ETENANCE CO Yrly Cost	Loan Cost at	Construction Loan Payments \$2,480,944 \$2,241,142 \$4,722,086	INVESTM (TPC + L Value (\$200 \$36,2 \$36,0
200 200 Tota ANNUAL OPERATING AND MAIN Costs Labor and Parts	Expended TPC (\$2005) 66 \$33,780,784 77 \$33,780,784 867,561,568 ETENANCE CO Yrly Cost \$1,240,168	Loan Cost at	Construction Loan Payments \$2,480,944 \$2,241,142 \$4,722,086	TOTAL PI INVESTM (TPC + L Value (\$200: \$36,20 \$36,00 \$72,20

	(default assumptions in pink background - with	out line numbers are	∍
	calculated values)		
1	Rated Plant Capacity ©	20.46	MW
2	Annual Electric Energy Production (AEP)	63,504	MWeh/yr
	Therefore, Capacity Factor	35.41	%
3	Year Constant Dollars	2005	Year
4	Federal Tax Rate	22	%
5	Province	New Brunswick	70
6	Provincial Tax Rate	16	%
_	Composite Tax Rate (t)	0.3448	%
	t/(1-t)	0.5263	70
7	Book Life	20	Years
			rears
8	Construction Financing Rate	9	2/
9	Common Equity Financing Share	30	%
10	Preferred Equity Financing Share	0	%
11	Debt Financing Share	70	%
12	Common Equity Financing Rate	17	%
13	Preferred Equity Financing Rate	0	%
14	Debt Financing Rate	8	%
	Current \$ Discount Rate Before-Tax	10.7	%
	Current \$ Discount Rate After-Tax	8.77	%
1 <i>E</i>	Inflation rate		%
		3	, , ,
-	Federal Investment Tax Credit	0	Assumed take PTC
17	Federal Production Tax Credit inc 3% escalation	0.0114	\$/kWh for 1st 10 yr
18	Provincial Investment Tax Credit	0	\$
19	Provincial Production Tax Credit		
20	Wholesale electricity price - 2005\$	\$0.0530	\$/kWh
21	Decline in wholesale elec. price from 2005 to 2008	4.20	%
	Annual decline in wholesale price, 2009 - 2011	1.42	%
23	Annual increase in wholesale price, 2012 - 2025	0.72	%
24	Yearly Unscheduled O&M	5	% of Sch O&M cos
			% OF SCIT ONIVI COS
-	MACRS Year 1	0.3000	
-	MACRS Year 2	0.2100	
	MACRS Year 3	0.1470	
28	MACRS Year 4	0.0940	
29	MACRS Year 5	0.0660	
30	MACRS Year 6	0.0460	
31	REC Rate	0.0000	\$/kWh for Project L
	ctricity Price Forecast Area		
The "Ave	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, are n 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then r	expected to decline I	•
The "Ave	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, aren 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then reconstruction 7.4 7.4 2004 7.29	expected to decline I	•
The "Ave from	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, aren 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then reconstruction 7.4 7.4 2004 7.29	expected to decline I	•
The "Ave from	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, are n 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then n 2003 7.4 7.4 2004 7.29 2005 7.19 2006 7.09	expected to decline I	•
The "Ave from	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, are n 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then n 2003 7.4 7.4 2004 7.29 2005 7.19 2006 7.09 2007 6.99	expected to decline ise to 7.3 cents/kWh	n 2025."
The "Ave from	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, are n 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then n 2003 7.4 7.4 2004 7.29 2005 7.19 2006 7.09 2007 6.99 2008 6.89 -4.20	expected to decline I	n 2025."
The "Ave from	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, are not 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then not 2003 17.4 17.4 2004 17.29 2005 17.19 2006 17.09 2007 16.99 2008 16.89 16.79 17.4 17.4 2009 16.79	expected to decline ise to 7.3 cents/kWh	n 2025."
The "Ave from	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, are not 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then not 2003 17.4 17.4 12.004 17.29 12.005 17.19 12.006 17.09 12.007 16.99 12.008 16.89 14.20 12.009 16.79 12.000 16.70	expected to decline lise to 7.3 cents/kWh	n 2025."
The "Ave from	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, are not 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then not 2003 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4	expected to decline ise to 7.3 cents/kWh	n 2025."
The "Ave from	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, are not 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then not 2003 7.4 7.4 2004 7.29 2005 7.19 2006 7.09 2007 6.99 2008 6.89 -4.20 2009 6.79 2010 6.7 2011 6.6 6.6 -1.42 2012 6.65	expected to decline lise to 7.3 cents/kWh	n 2025."
The "Ave from	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, are not 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then not 2003 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4	expected to decline lise to 7.3 cents/kWh	n 2025."
The "Ave from	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, are not 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then not 2003 7.4 7.4 2004 7.29 2005 7.19 2006 7.09 2007 6.99 2008 6.89 -4.20 2009 6.79 2010 6.7 2011 6.6 6.6 -1.42 2012 6.65	expected to decline lise to 7.3 cents/kWh	n 2025."
The "Ave from	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, are not 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then not 2003	expected to decline lise to 7.3 cents/kWh	n 2025."
The "Ave from	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, are not 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then research 7.4 cents/kWh in 2003 to 6.6 cents/kWh in 2003 to 6.6 cents/kWh in 2005 to 6.6 cents/kWh in 2003 to 6.6 cents/kWh in 2003 to 6.6 cents	expected to decline lise to 7.3 cents/kWh	n 2025."
The "Ave from	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, are not 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then research 7.4 cents/kWh in 2003 to 6.6 cents/kWh in 2003 to 6.6 cents/kWh in 2005 to 6.6 cents/kWh in 2003 to 6.6 cents/kWh in 2003 to 6.6 cents	expected to decline lise to 7.3 cents/kWh	n 2025."
The "Ave	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, are not 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then not 2003	expected to decline lise to 7.3 cents/kWh	n 2025."
The "Ave from	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, are not 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then not 2003 7.4 7.4 2004 7.29 2005 7.19 2006 7.09 2007 6.99 2008 6.89 -4.20 2009 6.79 2010 6.7 2011 6.6 6.6 -1.42 2012 6.65 2013 6.7 2014 6.74 2015 6.79 2016 6.84 2017 6.89 2018 6.94	expected to decline lise to 7.3 cents/kWh	n 2025."
The "Ave from	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, are not 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then not 2003 7.4 7.4 2004 7.29 2005 7.19 2006 7.09 2007 6.99 2008 6.89 -4.20 2009 6.79 2010 6.7 2011 6.6 6.6 -1.42 2012 6.65 2013 6.7 2014 6.74 2015 6.79 2016 6.84 2017 6.89 2018 6.94 2019 6.99	expected to decline lise to 7.3 cents/kWh	n 2025."
The "Ave	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, are not 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then research 7.4 cents/kWh in 2	expected to decline lise to 7.3 cents/kWh	n 2025."
The "Ave	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, are not 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then not 2003 and 7.4 and 7.4 and 7.29 and 7.29 and 7.4 and 7.29 and 7.9 and 7.9 and 7.9 and 7.9 and 7.09	expected to decline lise to 7.3 cents/kWh	n 2025."
The "Ave from	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, are not 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then research 7.4 cents/kWh in 2	expected to decline lise to 7.3 cents/kWh	n 2025."
The "Ave	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, are not 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then not 2003 and 7.4 and 7.4 and 7.29 and 7.29 and 7.4 and 7.29 and 7.9 and 7.9 and 7.9 and 7.9 and 7.09	expected to decline lise to 7.3 cents/kWh	n 2025."
The "Ave from	electricity price forecast from the EIA (Doc 002, Referage U.S. electricity prices, in real 2003 dollars, are not 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then research 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then research 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then research 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then research 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then research 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then research 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then research 7.4 cents/kWh in 2004 for 6.99 cents 6.8 cents in 2011, then research 7.4 cents/kWh in 2003 to 6.6 cents in 2011, then research 7.4 cents/kWh in 2004 for 6.99 cents/kWh in 2003 to 6.6 cents in 2011, then research 7.4 cents/kWh in 2003 for 6.6 cents in 2011, then research 7.4 cents/kWh i	expected to decline lise to 7.3 cents/kWh	n 2025."

INCOME STATEMENT (\$)		CURRENT DO	LLARS						
Description/Year	2009	2010	2011	2012	2013	2014	2015	2016	2017
REVENUES									
Energy Payments	3,523,349	3,577,519	3,632,522	3,688,370	3,826,474	3,969,749	4,118,389	4,272,594	4,432,573
REC income	0	0	0	0	0	0	0	0	
State ITC	0								
Federal ITC	0								
Fedaral PTC	723,946	745,664	768,034	791,075	814,807	839,251	864,429	890,362	917,073
TOTAL REVENUES	3,523,349	3,577,519	3,632,522	3,688,370	3,826,474	3,969,749	4,118,389	4,272,594	4,432,573
AVG \$/KWH	0.055	0.056	0.057	0.058	0.060	0.063	0.065	0.067	0.070
OPERATING COSTS									
Scheduled and Unscheduled O&M	2,253,592	2,321,199	2,390,835	2,462,560	2,536,437	2,612,530	2,690,906	2,771,633	2,854,782
Other	0	0	0	0	0	0	0	0	
TOTAL	2,253,592	2,321,199	2,390,835	2,462,560	2,536,437	2,612,530	2,690,906	2,771,633	2,854,78
EBITDA	1,269,758	1,256,320	1,241,686	1,225,810	1,290,037	1,357,219	1,427,483	1,500,961	1,577,79
Tax Depreciation	21,685,096	15,179,567	10,625,697	6,794,663	4,770,721	0	0	0	(
Interest Pald	4,047,885	3,959,429	3,863,898	3,760,724	3,649,296	3,528,953	3,398,983	3,258,616	3,107,019
TAXABLE EARNINGS	-24,463,223	-17,882,677	-13,247,909	-9,329,578	-7,129,980	-2,171,734	-1,971,501	-1,757,655	-1,529,22
State Tax	-3,914,116	-2,861,228	-2,119,665	-1,492,732	-1,140,797	-347,478	-315,440	-281,225	-244,67
Federal Tax	-4,520,804	-3,304,719	-2,448,213	-1,724,106	-1,317,620	-401,337	-364,333	-324,815	-282,60
TOTAL TAX OBLIGATIONS	-8,434,919	-6,165,947	-4,567,879	-3.216.838	-2.458.417	-748.814	-679,773	-606,040	-527,27

2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
4,598,543	4,770,726	4,949,357	5,134,676	5,326,935	5,526,392	5,733,317	5,947,990	6,170,701	6,401,752	6,641,453
0	0	0	0	0	0	0	0	0	0	0
944,585										
4,598,543	4,770,726	4,949,357	5,134,676	5,326,935	5,526,392	5,733,317	5,947,990	6,170,701	6,401,752	6,641,453
0.072	0.075	0.078	0.081	0.084	0.087	0.090	0.094	0.097	0.101	0.105
2,940,426	3,028,639	3,119,498	3,213,083	3,309,475	3,408,759	3,511,022	3,616,353	3,724,843	3,836,589	3,951,686
0	0	0	0	0	0	0	0	0	0	0
2,940,426	3,028,639	3,119,498	3,213,083	3,309,475	3,408,759	3,511,022	3,616,353	3,724,843	3,836,589	3,951,686
1,658,117	1,742,088	1,829,859	1,921,594	2,017,460	2,117,632	2,222,295	2,331,637	2,445,858	2,565,163	2,689,767
0	0	0	0	0	0	0	0	0	0	0
2,943,295	2,766,473	2,575,504	2,369,259	2,146,513	1,905,949	1,646,138	1,365,543	1,062,501	735,215	381,746
-1,285,178	-1,024,385	-745,645	-447,665	-129,054	211,684	576,156	966,094	1,383,357	1,829,948	2,308,020
-205,629	-163,902	-119,303	-71,626	-20,649	33,869	92,185	154,575	221,337	292,792	369,283
-237,501	-189,306	-137,795	-82,728	-23,849	39,119	106,474	178,534	255,644	338,174	426,522
-443,129	-353,208	-257,098	-154,355	-44,498	72,989	198,659	333,109	476,981	630,966	795,805

CASH FLOW STATEMENT							
Description/Year	2007	2008	2009	2010	2011	2012	2013
EBITDA			1,269,758	1,256,320	1,241,686	1,225,810	1,290,037
Taxes Paid			-8,434,919	-6,165,947	-4,567,879	-3,216,838	-2,458,417
CASH FLOW FROM OPS			9,704,677	7,422,267	5,809,565	4,442,648	3,748,454
Debt Service			-5,153,575	-5,153,575	-5,153,575	-5,153,575	-5,153,575
NET CASH FLOW AFTER TAX		-21,685,096	4,551,102	2,268,692	655,990	-710,927	-1,405,121
CUM NET CASH FLOW		-21,685,096	-17,133,994	-14,865,302	-14,209,312	-14,920,239	-16,325,360

2014	2015	2016	2017	2018	2019	2020	2021
1,357,219	1,427,483	1,500,961	1,577,791	1,658,117	1,742,088	1,829,859	1,921,594
-748,814	-679,773	-606,040	-527,278	-443,129	-353,208	-257,098	-154,355
2,106,033	2,107,256	2,107,000	2,105,069	2,101,246	2,095,296	2,086,958	2,075,949
-5,153,575	-5,153,575	-5,153,575	-5,153,575	-5,153,575	-5,153,575	-5,153,575	-5,153,575
-3,047,542	-3,046,319	-3,046,575	-3,048,506	-3,052,329	-3,058,279	-3,066,617	-3,077,626
-19,372,902	-22,419,221	-25,465,795	-28,514,301	-31,566,630	-34,624,909	-37,691,526	-40,769,153

2022	2023	2024	2025	2026	2027	2028
2,017,460	2,117,632	2,222,295	2,331,637	2,445,858	2,565,163	2,689,767
-44,498	72,989	198,659	333,109	476,981	630,966	795,805
2,061,957	2,044,644	2,023,636	1,998,528	1,968,876	1,934,197	1,893,961
-5,153,575	-5,153,575	-5,153,575	-5,153,575	-5,153,575	-5,153,575	-5,153,575
-3,091,618	-3,108,931	-3,129,939	-3,155,047	-3,184,698	-3,219,378	-3,259,614
-43,860,770	-46,969,701	-50,099,640	-53,254,687	-56,439,385	-59,658,763	-62,918,377
			IRR ON NET CAS	SH FLOW AFTER	TAX	#DIV/0!

Municipal Generator Cost of Electricity Worksheet

INSTRUC	TIONS	
	Inc	licates Input Cell (either input or use default values)
	Inc	licates a Calculated Cell (do not input any values)
Sheet 1		PI (Total Plant Cost/Total Plant Investment)
Officer 1.		Enter Component Unit Cost and No. of Units per System
		Worksheet sums component costs to get TPC
		Adds the value of the construction loan payments to get TPI
		Enter Labor Hrs and and Parts Cost by O&M inc overhaul and refit
		Worksheet Calculates Insurance and Total Annual O&M Cost
Sheet 3.		Overhaul and Replacement Cost)
		Enter Year of Cost and O&R Cost per Item
		Worksheets calculates the present value of the O&R costs
Sheet 4.		ptions (Financial)
		Enter project and financial assumptions or leave default values
Sheet 5.	NPV (I	let Present Value)
	A	Gross Book Value = TPI
	В	Annual Book Depreciation = Gross Book Value/Book Life
	С	Cumulative Depreciation
	D	MACRS 5 Year Depreciation Tax Schedule Assumption
	E	Deferred Taxes = (Gross Book Value X MACRS Rate - Annual
		Book Depreciation) X Debt Financing Rate
	F	Net Book Value = Previous Year Net Book Value - Annual Book
		Depreciation - Deferred Tax for that Year
Sheet 6.		Capital Revenue Requirements)
	A	Net Book Value for Column F of NPV Worksheet
	В	1.7 . 1.7
		Share X Common Equity Financing Rate
	С	Preferred Equity = Net Book X Preferred Equity Financing
		Share X Preferred Equity Financing Rate
		Debt = Net Book X Debt Financing Share X Debt Financing Rate
		Annual Book Depreciation = Gross Book Value/Book Life
	F	Income Taxes = (Return on Common Equity + Return of Preferred Equity -
		Interest on Debt + Deferred Taxes) X (Comp Tax Rate/(1-Comp Tax Rate
		Property Taxes and Insurance Expense =
		Calculates Investment and Production Tax Credit Revenues
0447		Capital Revenue Req'ts = Sum of Columns B through G
Sneet 7.		ixed Charge Rate)
		Nominal Rates Capital Revenue Req'ts from Columnn H of Previous Worksheet
		Nominal Rate Present Worth Factor = 1 / (1 + After Tax Discount Rate) Nominal Rate Product of Columns A and B = A * B
		Real Rates Capital Revenue Req'ts from Columnn H of Previous Worksheet
	Е	Real Rates Present Worth Factor = 1 / (1 + After Tax Discount Rate - Inflation Rate)
Shoot 9	E F	Real Rates Present Worth Factor = 1 / (1 + After Tax Discount Rate - Inflation Rate) Real Rates Product of Columns A and B = A * B
Sheet 8.	F Calcul	Real Rates Present Worth Factor = 1 / (1 + After Tax Discount Rate - Inflation Rate) Real Rates Product of Columns A and B = A * B ates COE (Cost of Electricity)
Sheet 8.	E F Calcul	Real Rates Present Worth Factor = 1 / (1 + After Tax Discount Rate - Inflation Rate) Real Rates Product of Columns A and B = A * B ates COE (Cost of Electricity) DE = ((TPI * FCR) + AO&M + LO&R) / AEP
Sheet 8.	E F Calcul	Real Rates Present Worth Factor = 1 / (1 + After Tax Discount Rate - Inflation Rate) Real Rates Product of Columns A and B = A * B ates COE (Cost of Electricity)

TPC Component	Unit	Unit Cost	Total Cost (2004\$)	
Procurement				
Power Conversion System	66	\$203,272	\$13,415,952	
Structural Elements	66	\$309,960	\$20,457,360	
Subsea Cables	Lot	\$1,210,000	\$1,210,000	
Turbine Installation	66	\$320,216	\$21,134,256	
Subsea Cable Installation	Lot	\$10,844,000	\$10,844,000	
Onshore Grid Interconnection	Lot	\$500,000	\$500,000	
TOTAL			\$67,561,568	
TOTAL PLANT INVESTMENT	(TPI) - 2005 \$			
TOTAL PLANT INVESTMENT	(TPI) - 2005 \$	Before Tax		
TOTAL PLANT INVESTMENT	Total Cash	Construction Loan Cost at Debt	2005 Value of Construction Loan	
		Construction Loan Cost at	Construction	
End of Year 2007	Total Cash Expended TPC (2005\$) \$33,780,784	Construction Loan Cost at Debt Financing Rate \$1,689,039	Construction Loan Payments \$1,532,008	INVESTMENT 2005\$ \$35,312,7
End of Year 2007 2008	Total Cash Expended TPC (2005\$) \$33,780,784 \$33,780,784	Construction Loan Cost at Debt Financing Rate \$1,689,039 \$1,689,039	Construction Loan Payments \$1,532,008 \$1,459,056	INVESTMENT 2005\$ \$35,312,7 \$35,239,8
End of Year 2007	Total Cash Expended TPC (2005\$) \$33,780,784	Construction Loan Cost at Debt Financing Rate \$1,689,039 \$1,689,039	Construction Loan Payments \$1,532,008	INVESTMENT 2005\$ \$35,312,7 \$35,239,8
End of Year 2007 2008	Total Cash Expended TPC (2005\$) \$33,780,784 \$33,780,784 \$67,561,568	Construction Loan Cost at Debt Financing Rate \$1,689,039 \$1,689,039 \$3,378,078	Construction Loan Payments \$1,532,008 \$1,459,056 \$2,991,064	INVESTMENT 2005\$ \$35,312,7 \$35,239,8
End of Year 2007 2008 Total	Total Cash Expended TPC (2005\$) \$33,780,784 \$33,780,784 \$67,561,568	Construction Loan Cost at Debt Financing Rate \$1,689,039 \$1,689,039 \$3,378,078	Construction Loan Payments \$1,532,008 \$1,459,056 \$2,991,064	INVESTMENT 2005\$ \$35,312,7 \$35,239,8
End of Year 2007 2008 Total ANNUAL OPERATING AND MA	Total Cash Expended TPC (2005\$) \$33,780,784 \$33,780,784 \$67,561,568	Construction Loan Cost at Debt Financing Rate \$1,689,039 \$1,689,039 \$3,378,078 COST (AO&	Construction Loan Payments \$1,532,008 \$1,459,056 \$2,991,064	INVESTMENT 2005\$ \$35,312,7 \$35,239,8
End of Year 2007 2008 Total ANNUAL OPERATING AND MA	Total Cash Expended TPC (2005\$) \$33,780,784 \$33,780,784 \$67,561,568 AINTENANCE Yrly Cost	Construction Loan Cost at Debt Financing Rate \$1,689,039 \$1,689,039 \$3,378,078 COST (AO& Amount \$1,240,168	Construction Loan Payments \$1,532,008 \$1,459,056 \$2,991,064	TOTAL PLANT INVESTMENT 2005\$ \$35,312,1 \$35,239,8 \$70,552,6

	ANCIAL (defaul		ns in pink backg	round	d - without line	numb	ers are
	-	ted values)					
1	Rated P	lant Capacit	ty ©		20.46		MW
2	Annual	Electric Ene	rgy Production (Al	EP)	63,504		MWeh/y
		e, Capacity			35.4		%
3		nstant Dolla	ırs		2005		Year
4		Tax Rate			0		%
5	Province				New Brunswick		
6		e Tax Rate	(1)		0		%
		site Tax Rate	(t)		0		
7	t/(1-t) Book Lit	fo			0.0000		Years
8		ction Financ	vina Pato		20		rears
9			ancing Share		0		%
10			ancing Share		0		%
11		nancing Sha			100		%
12			ancing Rate		0		%
13			ancing Rate		0		%
14		nancing Rate			5		%
			ate Before-Tax		5.00		%
	Nomina	Discount R	ate After-Tax		5.00		%
15	Inflation	Rate = 3%			3		%
	Real Dis	scount Rate	Before-Tax		1.94		%
	Real Dis	scount Rate	After-Tax		1.94		%
16	Federal	Investment ⁻	Tax Credit		0		
17		REPI (1)			0		\$/kWh
18		e Investment			0		% of TPI
19	Province	Investment	Production Tax C	redit	\$0		Credit - 1
	_		(2)				\$10M plan
20			Certificate (2)		0		\$/kWh
21	State 1a	ax Depreciat	ion		0	ır	nstallation
Note) c			-			
INOLE	1	\$/k\Wh for 1	⊥ Ist 10 years with e	scala	tion (assumed 3	% ner	vr)
	2		entire plant life with				
PPI		in inflation	mino piant mo ma	. 0000		. О / О Р	o. y.,
http://	www.gpec.org	g/InfoCenter/Topics	s/Economy/USInflation.html				
				F	REPI incentive		
					4.50	cents/	kWh
			1	993	1.50		
	1200/					cents/	kWh
1994	130%		1	994	1.52	cents/	
	130%		1		1.52	cents/ cents/	
1994			1	994	1.52 1.57		kWh
1994 1995 1996	3.60% 2.40%		1 1 1	994 995 996	1.52 1.57 1.61	cents/	kWh kWh
1994 1995 1996 1997	3.60% 2.40% -0.10%		1 1 1	994 995 996 997	1.52 1.57 1.61 1.61	cents/ cents/	kWh kWh kWh
1994 1995 1996	3.60% 2.40%		1 1 1	994 995 996	1.52 1.57 1.61 1.61 1.57	cents/	kWh kWh kWh
1994 1995 1996 1997	3.60% 2.40% -0.10%		1 1 1 1	994 995 996 997	1.52 1.57 1.61 1.61 1.57	cents/ cents/	kWh kWh kWh
1994 1995 1996 1997 1998	3.60% 2.40% -0.10% -2.50%		1 1 1 1 1	994 995 996 997 998	1.52 1.57 1.61 1.61 1.57	cents/ cents/ cents/	kWh kWh kWh kWh
1994 1995 1996 1997 1998 1999	3.60% 2.40% -0.10% -2.50% 0.90% 5.70%		1 1 1 1 1 2	994 995 996 997 998 999	1.52 1.57 1.61 1.61 1.57 1.58 1.67	cents/ cents/ cents/ cents/	kWh kWh kWh kWh kWh
1994 1995 1996 1997 1998 1999 2000	3.60% 2.40% -0.10% -2.50% 0.90% 5.70%		1 1 1 1 1 2 2	994 995 996 997 998 999	1.52 1.57 1.61 1.61 1.57 1.58 1.67 1.69	cents/ cents/ cents/ cents/ cents/	kWh kWh kWh kWh kWh
1994 1995 1996 1997 1998 1999 2000 2001	3.60% 2.40% -0.10% -2.50% 0.90% 5.70% 110%		1 1 1 1 1 2 2	994 995 996 997 998 999 2000 2001	1.52 1.57 1.61 1.61 1.57 1.58 1.67 1.69 1.65	cents/ cents/ cents/ cents/ cents/ cents/ cents/	kWh kWh kWh kWh kWh kWh
1994 1995 1996 1997 1998 1999 2000	3.60% 2.40% -0.10% -2.50% 0.90% 5.70% 110%		1 1 1 1 1 2 2 2 2	994 995 996 997 998 999 2000	1.52 1.57 1.61 1.61 1.57 1.58 1.67 1.69 1.65	cents/ cents/ cents/ cents/ cents/ cents/	kWh kWh kWh kWh kWh kWh

14-1111	ESENT VALU	L (141 V) - 20	υσ ψ			
TPI =	\$70,552,632					
Year	Gross Book	Book De	preciation	Canadian Declining BalanceTax	Deferred	Net Boo
End	Value	Annual	Accumulated	Depreciation Schedule	Taxes	Value
	Α	В	С	D	E	F
2008	70,552,632		-			70,552,6
2009	70,552,632	3,527,632	3,527,632	0	0	
2010	70,552,632	3,527,632	7,055,263	0	0	63,497,3
2011	70,552,632	3,527,632	10,582,895	0	0	59,969,7
2012	70,552,632	3,527,632	14,110,526	0	0	56,442,1
2013	70,552,632	3,527,632	17,638,158	0		
2014	70,552,632	3,527,632	21,165,790	0	0	49,386,8
2015	70,552,632	3,527,632	24,693,421	0	0	45,859,2
2016	70,552,632	3,527,632	28,221,053	0	0	42,331,5
2017	70,552,632	3,527,632	31,748,684	0		
2018	70,552,632	3,527,632	35,276,316	0	0	35,276,3
2019	70,552,632	3,527,632	38,803,948	0	0	31,748,6
2020	70,552,632	3,527,632	42,331,579	0		
2021	70,552,632	3,527,632	45,859,211	0		
2022	70,552,632	3,527,632	49,386,842	0		
2023	70,552,632	3,527,632	52,914,474	0		
2024	70,552,632	3,527,632	56,442,106	0		
2025	70,552,632	3,527,632	59,969,737	0		
2036 2027	70,552,632 70,552,632	3,527,632 3,527,632	63,497,369 67,025,000	0		

СДРІ	TAL REVEN	NUE REO	IIIREMEI	NTS - 200	5 \$			
<u> </u>		TOL KLQ	OIIVEIVIEI	110 200	ΟΨ			
TPI :	\$70,552,632							
End of Year	Net Book	Returns to Equity Common	Returns to Equity Pref	Interest	Book Dep	Income Tax on Equity Return	REPI	Capital Revenue Req'ts
	Α	В	С	D	E	F	н	1
2009	67,025,000	0	0	3,351,250	3,527,632	0	0	6,878,882
2010	63,497,369	0	0	3,174,868	3,527,632	0	0	6,702,500
2011	59,969,737	0	0	2,998,487	3,527,632	0	0	6,526,118
2012	56,442,106	0	0	2,822,105	3,527,632	0	0	6,349,737
2013	52,914,474	0	0	2,645,724	3,527,632	0	0	6,173,355
2014	49,386,842	0	0	2,469,342	3,527,632	0	0	5,996,974
2015	45,859,211	0	0	2,292,961	3,527,632	0	0	5,820,592
2016	42,331,579	0	0	2,116,579	3,527,632	0	0	5,644,211
2017	38,803,948	0	0	1,940,197	3,527,632	0	0	5,467,829
2018	35,276,316	0	0	1,763,816	3,527,632	0	0	5,291,447
2019	31,748,684	0	0	1,587,434	3,527,632	0	0	5,115,066
2020	28,221,053	0	0	1,411,053	3,527,632	0	0	4,938,684
2021	24,693,421	0	0	1,234,671	3,527,632	0	0	4,762,303
2022	21,165,790	0	0	1,058,289	3,527,632	0	0	4,585,921
2023	17,638,158	0	0	881,908	3,527,632	0	0	4,409,539
2024	14,110,526	0	0	705,526	3,527,632	0	0	4,233,158
2025	10,582,895	0	0	529,145	3,527,632	0	0	4,056,776
2026	7,055,263	0	0	352,763	3,527,632	0	0	3,880,395
2027	3,527,632	0	0	176,382	3,527,632	0	0	3,704,013
2028	0	0	0	0	3,527,632	0	0	3,527,632
Sum c	of Annual Capit	al Revenue	Requireme	nts				104,065,132

TPI =	\$70,552,632					
End of Year	Capital Revenue Req'ts Nominal A	Present Worth Factor Nominal B	Product of Columns A and B	Capital Revenue Req'ts Real D	Present Worth Factor Real E	Product of Columns D and E F
2009	6,878,882	0.8227	5,659,273	6,111,797	0.9260	5,659,273
2010	6,702,500	0.7835	5,251,584	5,781,635	0.9200	5,059,273
2010	6,526,118	0.7462	4,869,890	5,465,521	0.8910	4,869,890
2012	6,349,737	0.7107	4,512,639	5,162,917	0.8740	4,512,639
2013	6,173,355	0.6768	4,178,370	4,873,304	0.8574	4,178,370
2014	5,996,974	0.6446	3,865,703	4,596,181	0.8411	3,865,703
2015	5,820,592	0.6139	3,573,339	4,331,067	0.8250	3,573,339
2016	5,644,211	0.5847	3,300,053	4,077,498	0.8093	3,300,053
2017	5,467,829	0.5568	3,044,692	3,835,025	0.7939	3,044,692
2018	5,291,447	0.5303	2,806,168	3,603,218	0.7788	2,806,168
2019	5,115,066	0.5051	2,583,456	3,381,661	0.7640	2,583,456
2020	4,938,684	0.4810	2,375,592	3,169,953	0.7494	2,375,592
2021	4,762,303	0.4581	2,181,666	2,967,710	0.7351	2,181,666
2022	4,585,921	0.4363	2,000,822	2,774,558	0.7211	2,000,822
2023	4,409,539	0.4155	1,832,255	2,590,140	0.7074	1,832,255
2024	4,233,158	0.3957	1,675,204	2,414,111	0.6939	1,675,204
2025	4,056,776	0.3769	1,528,956	2,246,139	0.6807	1,528,956
2026	3,880,395	0.3589	1,392,838	2,085,903	0.6677	1,392,838
2027	3,704,013	0.3418	1,266,216	1,933,097	0.6550	1,266,216
2028	3,527,632	0.3256	1,148,496	1,787,422	0.6425	1,148,496
	104,065,132		59,047,211	73,188,857		59,047,21
				Nominal \$		Real \$
-		t the beginning he products of t				
		es the annual i		59,047,211		59,047,2
2. Escalati			•	3%		3%
	t Rate = i			5.00%		1.94%
		r value = i(1+i)	"/(1+i)"-1 where			
oook life =	n and discou	nt rate = i	-	0.08024259		0.0608134
5. The lev	elized annual	charges (end o	f year) = Present			
		Recovery Facto	r (Item 4)	4,738,101		3,590,8
6. Booked				70,552,632		70,552,6
The lev	elized annual	fixed charge ra	te (levelized			
		by the booked		0.0672		0.0509

LE	VELIZE	COST	F EL ECTRICITY (CALCULATION - MUNICIPA	L GENERATOR - 2009	;¢
	- V L L Z L		LLLOTRIOTT	SALCOLATION - MONION A	E OLIVLINATION - 2000	<i>γ</i> ψ
	COE =	((TPI * FCR)	+ AO&M) / AEP			
	_	words	,			
	The Cos	st of Electrici	ty =			
		The Sum of	the Levelized Plant I	nvestment + Annual O&M Cost +	Levelized Overhaul and R	Replacement Cost
			he Annual Electric E			<u> </u>
NO	DMINAL	RATES				
	_			<u>Value</u>	Units	From
	TPI			\$70,552,632	\$	From TPI
	FCR			6.72%	%	From FCR
	AO&M			\$2,253,592	\$	From AO&M
	AEP =			63,504	MWeh/yr	From Assumption
	COF - 1	TPI X FCR		7.46	cents/kWh	
	COE - A			3.55	cents/kWh	
	COE			\$0.1101	\$/kWh	Calculated
	COE			11.01	φ/κνντι cents/kWh	Calculated
	COE			11.01	Cents/KVVII	Calculated
RE	EAL RAT	ES				
	TPI			\$70,552,632	\$	From TPI
	FCR			5.09%	%	From FCR
	AO&M			\$2,253,592	\$	From AO&M
	AEP =			63,504	MWeh/yr	From Assumption
	COE - 1	TPI X FCR		5.65	cents/kWh	
	COE - A	M&OA		3.55	cents/kWh	
	COE			\$0.0920	\$/kWh	Calculated
	COE			9,20	cents/kWh	Calculated